کود دهي گياهان گلخانه اي

گياهان نيز مانند انسانها براي رشد و نمو به ومواد غذايي نياز دارند . فتوسنتز تامين كننده كربوهيدرات است و به علاوه لازم است عناصر معدني خاصي از محيط ريشه جذب گياه شود . جذب عناصر توسط ريشه گياهان به صورت اختصاصي نيست , به اين معني كه وود عناصر در گياه دليل بر ضروري بودن آن براي رشد و نمو نيست . گياه قادر به تشخيص مواد جذب شده از خاك نيست , چون اگر چنين بود علف كش ها را جذب نمي كرد . شرايط ضروري بودن عناصر اين است كه فقدان عنصر , رشد زايشي و رويشي را با مشكل مواجه كند . با به كار بردن عنصر علايم كمبود بر طرف شود و عنصر مستقيما در تغذيه گياه نه در فعاليت هاي شيميايي يا ميكروبيولوژي خاك يا محيط كشت موثر باشد . برخي از حشره كش ها كه به خاك اضافه مي شود از طريق سيستم آوندي به تمام قسمت هاي گياه منتقل و در اثر تغذيه حشره از شيره گياه منجر به مرگ آن مي شود .

۹۰ در صد وزن گياه را آب و ۹۰ در صد وزن ماده خشك را كربن , هيدروژن و اكسيژن تشكيل مي دهد و ۱۰ درصد باقي مانده را ۱۴ عنصر ضروري تشكيل مي دهد . اين عناصر شامل عناصر پر مصرف و كم مصرف و كلر و سديم مي باشد .
عناصر پر مصرف : نيتروژن , فسفر , پتاسيم , كلسيم ,منيزيم , گوگرد .
عناصر كم مصرف : آهن , بر , منگنز , مس , روي , موليبدن , كلر .

توزيع مواد معدني در گياه : اگر برگ در دماي ۵۰۰ درجه سانتي گراد به مدت ۴ سات قرار داده شود مشخص مي شود كه ۹۵ – ۹۰ درصد برگ را آب تشكيل داده است و داراي ۱۰ – ۵ درصد ماده خشك مي باشد و ۲۵ – ۱ درصد ماده خشك را مواد معدني تشكيل مي دهد . ميزان مواد معدني بستگي به نوع اندام يا بافت و سن آن دارد . ميزان مواد معدني در بذر بيشتر از ميوه و در ريشه كوچك , بيشتر از ريشه بزرگ مي باشد. دي اكسيد كربن خاك در تركيب با آب تشكيل اسيد كربنيك مي دهد كه باعث شكستن مواد آلي خاك , ذرات خاك . كود ها مي شود و باعث آزاد شدن يون ها و جذب آن ها توسط ريشه مي گردد.
ظرفيت تبادل كاتيوني : ظرفيت تبادل كاتيوني به ميزان بار منفي ذرات خاك مربوط مي شود . بر حسب واحد اكي والان بر ۱۰۰ سانتي متر مكعب بيان مي شود . چون غلظت اكثر عناصر غذايي در داخل ريشه بيشتر از محيط رشد است . براي جذب مقادير اضافي نياز به انرژي است كه از طريق شكستن قند حاصل مي گردد . ميزان تبادل كاتيوني رس بيشتر از مواد آلي است .

شاخص شوري : اصولا كودها حاوي نمك هستند و وقتي به خاك اضافه مي شود ميزان نمك خاك را افزايش مي دهند. انتخاب كود مناسب كمك مي كند تا غلظت نمك خاك در حد پايين حفظ شود . منظوراز شاخص شوري اثري است كه كود هاي مختلف روي ميزان شوري خاك دارند. شاخص شوري نتيترات سديم را ۱۰۰ در نظر مي گيرند و شاخص شوري ساير كودها را بر اساس آن رتبه بندي مي كنند .

صدمه شوري به گياهان: ميزان غلضت املاح موجود در خاك و سلول هاي ريشه تعيين كننده انتقال مواد از محلول به داخل گياه است و جريان آب به طرف غلظت بيشتر املاح بوده كه معمولا ميزان آن در محيط خاك بيشتر از سلول هاي ريشه بوده و از اين جهت جريان مواد از محيط ريشه به داخل سلول هاي گياه است .

معمولا صدمه شوري اسمزي است . در اثر افزايش غلظت نمك در محيط ريشه آب از سلول هاي ريشه به محيط ريشه كشيده مي شود در نتيجه محتوايي سلول به خارج ازآن كشيده مي شود و گياه دچار پلاسموليز مي شود . وقتي كه پلاسموليز در تعداد زيادي از سلول هاي گياه روي مي دهد خشكي فيزيولوژي اتفاق مي افتد و سلولهاي ريشه دچار كم آبي شديد مي شود .

روشهاي كاهش نمك بستر محيط ريشه : براي كاهش ميزان شوري خاك بايد كود هاي شيميايي را به مقدار مناسب مصرف كرد . اگر غلظت نمك به حدي برسد كه باعث كاهش رشد شود , بايد خاك را شستشو داد تا نمك اضافي از خاك خارج شود . ميزان آب مورد نياز ۲۰۳٫۸ – ۱۲۲٫۸ ليتر آب در هر متر مربع بستر مي باشد و پس از ۳۰ دقيقه دومين آبياري بايد انجام شود تا نمك ها از خاك خارج شود . اگر ميزان نمك خاك خيلي زياد باشد سومين و چهارمين آبياري نيز مورد نياز مي باشد . زهكشي مناسب خاك باعث خروج نمك ها مي شود .
به طور كلي ميزان نمك هاي قابل حل در خاك مي تواند توسط آبياري كافي و استفاده از محيط كشت با زه كشي مناسب كنترل كرد .

کاربرد بیوتکنولوژی در باغبانی
با افزایش جمعیت در دنیا، نیاز به افزایش تولید میوه و سبزى نیز به همان نسبت وجود دارد. چگونه مى توان این نسبت را متوازن نمود و تولیدات باغبانى را با افزایش جمعیت، افزایش داد؟ تکنیک هاى سنتى به نژادى گیاهان، پیشرفت هاى قابل توجهى را در اصلاح ارقام با پتانسیل بالا به وجود آورده اند ولى این تکنیک ها قادر نیستند میزان تولید میوه ها و سبزى ها را نسبت به افزایش تقاضا براى این محصولات در کشورهاى در حال توسعه بالا ببرند.

لذا یک نیاز فورى به استفاده از بیوتکنولوژى براى سرعت دادن به توسعه برنامه هاى اجرایى احساس مى شود. ابزارهاى بیوتکنولوژى در تمام برنامه هاى به نژادى محصولات باغبانى با اصلاح ارقام جدید گیاهى، مهیا نمودن مواد مناسب کشت، حشره کش هاى انتخابى موثرتر و کودهایى با کارایى بالاتر، مورد استفاده و نیاز هستند. اکثر میوه ها و سبزى هاى موجود در بازار کشورهاى توسعه یافته، به صورت ژنتیکى دستکارى شده اند. بیوتکنولوژى مدرن، طیف وسیعى از موجودات زنده یا مواد حاصل از میکروارگانیسم ها را در ساختن یا تغییر یک فرآورده جهت اصلاح گیاهان یا حیوانات و یا اصلاح میکروارگانیسم هایى براى کاربردهاى خاص در بر گرفته و مورد استفاده قرار مى دهد. بیوتکنولوژى یک جنبه جدیدى از بیولوژى و علوم کشاورزى است که ابزار و راهکارهاى جدیدى را بر حل مشکلات متفرقه تولید غذا در دنیا مهیا مى سازد. عمده ترین کاربردهاى بیوتکنولوژى جهت اصلاح و بهبود محصولات باغبانى عبارتند از:۱- کشت بافت. ۲- مهندسى ژنتیک. ۳- شناساگرهاى مولکولى. ۴- مارکرهاى مولکولى. ۵- تولید و توسعه میکروب هاى مفید

• کشت بافت یکى از کاربردهاى وسیع بیوتکنولوژى در زمینه کشت بافت، به ویژه ریز ازدیادى است. این تکنیک یکى از مهمترین تکنیک هاى مورد استفاده براى ازدیاد غیرجنسى سریع گیاهان در درون شیشه (In vitro) به حساب مى آید. تکنیک کشت بافت از نظر زمان و فضاى مورد استفاده براى تولید انبوهى از گیاهان عارى از بیمارى بسیار مقرون به صرفه است. همچنین انتقال منابع با ارزش گیاهى (ژرم پلاسم) از نواحى بومى گیاهان به اقصى نقاط دنیا با کشت بافت میسر و تسهیل شده است. این در حالى است که روش سنتى قادر به پاسخگویى و تامین مواد گیاهى مورد نیاز جهت تقاضاهاى موجود نیست.

تولید گیاهان عارى از ویروس با تکنیک کشت مریستم (نقاط رشدى در نوک ساقه و ریشه گیاهان) در اکثر محصولات باغبانى امکان پذیر شده است. تکنیک نجات جنین (رویان) یکى دیگر از کاربردهاى کشت بافت است که به نژادگران گیاهى را ساخته است تا از سقط جنین هاى گیاهى در اثر عوامل مختلف پیشگیرى نمایند. کشت جنین هاى نجات یافته در مراحل مناسب نمو، مى تواند مشکل ناسازگارى پس از تشکیل تخم را حل نماید. این تکنیک در گونه هاى باغبانى مشکل دار بسیار موثر بوده است. اکثر گونه هاى بقولات مناطق خشک به طور موفقیت آمیزى از طریق کشت لپه ها، محور زیرلپه اى (هیپوکوتیل)، برگ، تخمدان، پروتوپلاست، دمبرگ، ریشه، بساک و… باززایى مى شوند.

تولید گیاهان هاپلوئید (n _ کروموزومى) از طریق کشت گرده یا بساک یکى از کاربردهاى مهم کشت بافت در به نژادى گیاهان است. این تکنیک بسیار سریع بوده و از نظر اقتصادى غیرمقرون به صرفه است. هموزیگوتى کامل نتایج به گزینش فنوتیپ ها براساس خصوصیات کمى و کیفى توارث یافته کمک مى کند و باعث تسهیل در به نژادى، ایزولاسیون موفق، کشت و ترکیب پروتوپلاست هاى گیاهى مى شود و در انتقال نر عقیمى سیتوپلاسمى جهت دستیابى به گیاهان هیبریدقوى، از طریق ترکیب میتوکندریایى بسیار مفید و موثر است و کارایى زیادى در انتقال ژنتیکى در گیاهان دارد. حفاظت درون شیشه اى ژرم پلاسم ها در محیط هاى کشت آماده و روش هاى جایگزین جهت غلبه بر مشکلات مدیریتى منابع ژنتیکى در محصولاتى که به طور غیرجنسى تکثیر مى شوند و گیاهانى که هتروزیگوتى بالایى دارند و ذخیره بذر مناسبى ندارند،

از اهمیت زیادى برخوردار شده است. در برخى از محصولات خاص، حفاظت درون شیشه اى، راحت و بسیار موثر است. این تکنیک ها به طور موفقیت آمیزى در مورد محصولات باغبانى به کار گرفته شده و در مراکز مختلف جمع آورى ژرم پلاسم، شناخته شده هستند. ژرم پلاسم درون شیشه اى همچنین تبادل مواد گیاهى عارى از آفت و بیمارى را تضمین نموده و به قرنطینه بهتر آنها کمک مى کند.به نژادگران گیاهى به طور ممتد در حال تحقیق بر روى تغییرات ژنتیکى جدیدى هستند که کارآیى بالایى در اصلاح ارقام جدید دارند. برخى از گیاهان باززایى شدند. از طریق کشت بافت، اغلب تنوع فنوتیپى غیرمعمول و جدیدى را نسبت به فنوتیپ گیاه اصلى و مادرى از خود نشان مى دهند. چنین تنوعى را، تغییرات سوماکلونال (Somaclonal) مى نامند که مى تواند قابل توارث و تثبیت باشد و در نسل بعدى دیده شود. همچنین، تغییرات ممکن است اپى ژنتیکى باشند و در تولید مثل جنسى (ازدیاد جنسى) دیده نشوند. تغییرات قابل توارث براى به نژادگرهاى گیاهى بسیار مفید هستند.

• مهندسى ژنتیک در گیاهان مهندسى ژنتیک در سه مرحله اصلى زیر دخالت دارد: ۱- شناسایى و جدا کردن ژن هاى مطلوب براى انتقال. ۲- سیستم رهاسازى جهت وارد کردن ژن مطلوب به داخل سلول هاى پذیرنده. ۳- بیان اطلاعات ژنتیکى جدید در سلول هاى پذیرنده. با استفاده از تکنیک هاى مهندسى ژنتیک، ژن هاى مفید زیادى به داخل گیاهان وارد شده و باعث توسعه گیاهان تغییر یافته ژنتیکى (گیاهان تراریخته) گردیده است. در این گیاهان DNA خارجى به طور ثابت الحاق یافته و فرآورده ژنى مناسبى را باعث مى شود. گیاهان تراریخته وسعتى در حدود ۶/۵۲ میلیون هکتار را در کشورهاى صنعتى و در حال توسعه تا سال ۲۰۰۱ به خود اختصاص داده اند.

ژن ها براى دستیابى به خصوصیات مفید زیر به داخل محصولات گیاهى وارد مى شوند. مقاومت به علف کش ها: گیاهان تراریخته مقاوم به علف کش ها این امکان را براى کشاورزان به وجود آورده اند که بدون صدمه به گیاه اصلى، جهت از بین بردن علف هاى هرز از علف کش هاى مختلف استفاده کنند. اکثر گیاهان مقاوم به علف کش ها در گیاهانى نظیر گوجه فرنگى، توتون، سیب زمینى، سویا، کتان، ذرت، خردل روغنى، اطلسى و امثال آن به وجود آمده اند. گلیفوسات (Glyphosate) یکى از قوى ترین علف کش هایى است که براى طیف وسیعى از گیاهان با نام تجارى رانداپ (Round up) در حال استفاده است. گلیفوسات با بلوکه کردن یک آنزیم ۵-انول پروویل شیکیمات -۳-فسفات سنتاز (EPSPS) که در بیوسنتز اسیدهاى آمینه حلقوى نظیر تیروزین، فنیل آلانین و تریپتوفان نقش دارد، منجر به از بین رفتن علف هاى هرز مى شود. اسیدهاى آمینه مواد سازنده پروتئین ها هستند.

گیاهان تراریخته مقاوم به گلیفوسات که حاوى ژن EPSPS هستند به مقادیر زیادى آنزیم مورد نظر را تولید کرده و در برابر اثرات گلیفوسات از خود مقاومت نشان مى دهند. قابل ذکر است که این علف کش یک علف کش عمومى است و تمام گیاهان را از بین مى برد. تعدادى از آنزیم هاى سم زدا در گیاهان و میکروب ها شناسایى شده اند از جمله آنزیم گلوتاتیون _ اس _ ترانسفور (GST) در ذرت و گیاهان دیگر، اثرات سمى علف کش بروموکسینیل (Bromoxynil) را خنثى مى کند و همچنین آنزیم فسفینوتریسین استیل ترانفسفراز (pat) که اثرات سمى علف کش PPT (ال _ فسفینوتریسین) را خنثى مى کند. با گرفتن ژن ban از klebsiella و ژن bar از قارچ هاى استرپتومیست (Strepotomyces) و انتقال آنها به سیب زمینى، چغندر قند، سویا،

کتان و ذرت، گیاهان تراریخته اى حاصل شده اند که به علف کش ها مقاوم اند. گیاهان تراریخته، زحمت و هزینه مبارزه با علف هاى هرز را براى کشاورز کاهش داده و باعث افزایش عملکرد محصول مى گردند. مهندسى مقاومت به پاتوژن ها (عوامل بیمارى زا): ویروس ها مهم ترین و خطرناک ترین عوامل بیمارى زاى گیاهى بوده که به طور قابل توجهى عملکرد محصولات باغبانى را کاهش مى دهند. راهکارهایى با استفاده از پوشش پروتئینى ویروس ها و RNA ماهواره اى جهت کنترل آلودگى هاى ویروسى به کار گرفته شده است. ویروس ها موجودات ذره بینى متشکل از اسیدهاى نوکلئوئیک (RNA DNA) هستند که در یک پوشش پروتئینى محصور بوده و قادر به تکثیر زیاد در داخل سلول میزبان هستند. استفاده از پوشش پروتئینى ویروس به عنوان یک عامل قابل تغییر جهت تولید گیاهان مقاوم به ویروس یکى از دستاوردهاى مهم بیوتکنولوژى گیاهى است.

ژن مسئول ساخت پوشش پروتئینى از ویروس موزائیک توتون (TMV) به عنوان یک ویروس با RNA رشته اى مثبت به گیاه توتون انتقال داده شده و آن را مقاوم به ویروس TMV کرده است. استفاده از ژن مقاوم به پروتئین nucelocapsid در گیاهانى نظیر گوجه فرنگى، توتون، کاهو، بادام زمینى، فلفل و گل هاى زینتى مانند حنا، گل ابرى و داوودى جهت مقاومت به ویروس لکه پژمردگى گوجه فرنگى معرفى شده است. استفاده از RNA ماهواره اى (SATRNA) برخى گیاهان تراریخته را به ویروس موزائیک خیار (CMV) مقاوم کرده است. گیاهان تراریخته مقاومى نیز در برابر ویروس موزائیک یونجه، ویروس x سیب زمینى، ویروس تانگروى برنج، ویروس جغ جغى توتون و ویروس لکه حلقوى خربزه درختى (پاپایا) به وجود آمده اند. در دهه اخیر، ژن هاى مقاومى در شناسایى پاتوژن هاى بیمارى زا معرفى و کلون شده اند. همچنین برخى از مسیرهاى مشخصى که آلودگى پاتوژنى را دنبال مى کنند،

مورد شناسایى قرار گرفته اند. برخى ترکیبات ضدقارچ در گیاهان مقاوم به آلودگى هاى قارچى شناسایى و ساخته شده است. راهکارهاى مناسبى جهت توسعه مقاومت به قارچ ها با تولید گیاهان تراریخته حاوى مولکول هاى ضدقارچ نظیر پروتئین ها و سموم توسعه یافته است. ژن کیتیناز (Chitinase) گرفته شده از لوبیا، مقاومت زیادى به بیمارى قارچى Rhizoctonia solani در توتون و شلغم به وجود آورده است. همچنین این ژن که از باکترى خاکزى Serratia marcescens گرفته شده است در گیاه توتون، مقاومت به بیمارى قارچى Altenaria longipes که باعث بیمارى لکه قهوه اى مى شود را ایجاد کرده است. ژن استیل ترانسفراز در توتون، مقاومت به بیمارى باکتریایى Pseudomonas Syringea را باعث شده است. مقاومت به تنش ها: برخى از ژن ها مسئول ایجاد مقاومت در برابر تنش هایى همچون گرما، سرما، شورى، عناصر سنگین و هورمون هایى گیاهى هستند