سوخت

تعریف سوخت
به هر ماده ای که توانایی ایجاد گرما ، در اثر سوختن یا تحول شیمیایی ، داشته باشد سوخت می گویند.سوختها را می توان به دودسته عمده طبیعی و مصنوعی تقسیم کرد . سوختهای طبیعی طی سالیان دراز در طبیعت تولید شده اند.در واقع ، این سوختها حتی بدون نیاز یه عملیات خاصی قابل استفاده هستند و به دلیل اینکه از کربن ، هیدروژن و سایر ترکیبات آنها ساخته شده اند ، یه آنها سوختهای هیدروکربنی یا سوختهای فسیلی نیز می گویند. سوختهای فسیلی از ترکیبات

هیدروکربن ( ترکیباتی شامل کربن و هیدروژن ) و بقایای فسیل شده گیاهان و جانوران به وجود آمده اند.دگرگونی بقایای فسیلی ،از طریق واکنشهای بیوشیمیایی و تغییرات جغرافیایی ، سبب تولید این نوع سوختها شده است . این سوختها عبارتند از زغال سنگ ، نفت و گازطبیعی.

سوختهای مصنوعی درنتیجه عملیات شیمیایی ، فیزیکی یا گرمایی بر روی سوختهای طبیعی به دست می آیند. از جمله این سوختها می توان زغال چوب ، کک، نفت سفید، گاز سوختنی تولیدی و عناثر بارورشده توسط فعل وانفعالات هسته ای را نام برد.
سوخت هسته ای
موادی که هسته آنها با نوترون بمباران می شوند و به مواد قابل شکافت هسته ای معروف هستند عبارتند از : اورانیوم ۲۳۵،اورانیوم ۲۳۳ ، و پلوتونیوم ۲۳۹ که از این سه عنصر ، فقط اورانیوم ۲۳۵ در طبیعت موجود است . پلوتونیوم ۲۳۹ و اورانیوم ۲۳۳ به ترتیب از طریق استحاله اورانیوم ۲۳۸ و توریوم ۲۳۲ تولید می شوند . دوماده اخیر ، به « مواد بارور» معروف هستند.
اورانیوم طبیعی ، پس از طی یک سلسله عملیات معدنی وتصفیه شیمیایی ، محتوی ۷۱% درصداورانیوم ۲۳۵ و مقدار بسیار کمی اورانیوم ۲۳۳ است و بقیه آن را اورانیوم ۲۳۸ تشکیل می دهد. فلز اورانیوم به سه صورت ( بسته به درجه حرارت ) ظاهر می شود ، این سه فرم به نامهای آلفا ، بتا و گاما معروف هستند. فرم آلفا تا درجه حرارت ۶۶۰ سانتی گراد، بتا از ۶۶۰ تا ۷۶۰ و گاما از ۷۶۰ درجه به بالا ظاهر می شود.
فلز اورانیوم از نظر شیمیایی بسیاراکتیو ( فعال) است. در حرارت معمولی ، هوا و آب آن را می خورند و در حرارت زیاد ، فورا” با آب ترکیب می شود . این یکی از دلایلی است که موجب می

 

شود میله های اورانیوم را در رآکتورها، در غلاف هایی از منیزیوم یا منگنوکس قرار دهند. اورانیوم دارای خاصیت رادیواکتیویته طبیعی است ، به این معنی که از آن پرتو قابل نفوذی شبیه پرتو ایکس (x ) ساطع می شود از میان این سه دسته ، اثرات نامطلوب پرتو گاما از همه بیشتر است، اما شدت رادیو اکتیویته طبیعی اورانیوم نسبتا” کم است ، به طوری که برای عملیات معدنی تصفیه شیمیایی ساخت میله های اورانیوم و قرار دادن آنها دررآکتور؛ مشکلات بزرگی ایجاد نمی کند. کارکنان این موسسات می توانند با وسایل حفاظتی معمولی ، از قبیل دستکش ، و روشهای مخصوص تا مرحله آخر قرار دادن او رانیوم در غلاف های غیر قابل نفوذ به طور کافی حفاظت شوند.
بعد از اینکه اورانیوم در رآکتور تحت تاثیر بمباران نوترون قرار گرفت ، شدت پرتو رادیو اکتیو بالا می رود علاوه بر این ، نوترون ها که دارای انرژی زیادی هستند مخاطراتی ایجاد می کنند. از این مرحله به بعد ، هرگونه عملیات روی میله ها ی اورانیوم باید از دور و با وسایل مکانیکی ، الکتریکی و هیدرولیکی صورت می گیرد . هم چنین ، سوخت مصرف شده در رآکتور به شدت رادیواکتیویته بوده و باید با مراقبتهای مخصوص منتقل شود. اورانیوم برای ایجاد انفجار هسته ای و تولید حرارت باید مورد اصابت نوترون قرار گیرد . این نوترون می تواند از یک منبع خارجی تهیه نوترون تامین شودیا از نوترونهای آزادی که در یک حجم از اورانیوم وجود دارند استفاده شود. در یک حجم اورانیوم همیشه مقداری نوترون آزاد وجوددارد و حتی بعضی از آنها موجب انفجار هسته ای می شوند ولی نوترونهای تولید شده از جدار اورانیوم گذشته وارد هوا می شوند و در نتیجه فعل و انفعال سلسله ای ایجاد نمی کنند . از یک حجم به بالا خارج شدن بعضی از نوترون ها ی آزاد مشکل شده و موجب اصابت باهسته های اورانیوم وشروع فعل و انفعال سلسله ای می شود.طبیعی است که این حجم بحرانی (Cirtic )، به ظاهر هندسی آن نیز بستگی دارد . در رآکتورهای اتمی ، معمولا حجم رآکتور بالاتر از حجم بحرانی است و در نتیجه شروع فعل و انفعالات سلسله ای ، خود به خود و بدون تهیه منبع نوترون مجزا انجام می گیرد ، ولی در بعضی موارد ، از منبع نوترون مجزا نیز استفاده می شود. در بعضی رآکتورها اورانیوم به صورت اکسیدیاترکیبات دیگر مورد استفاده قرار می گیرد . درصد اورانیوم در این ترکیبات زیاد است از نظر انفجارات هسته ای همان خواص اورانیوم خالص را دارد . بدین ترتیب اولا در عمل تبدیل ترکیبات فوق به اورانیوم خالص صرفه جویی شده و ثانیا، از بعضی خواص فیزیکی مطلوب آنها نیز استفاده شده است .استفاده از سوخت هسته ای برای تولید انرژی برق، با به کارگیری اولین رآکتورهای قدرت دردهه ۶۰ میلادی شروع شد وتولیدو مصرف آن به طور پیوسته رو به افزایش نهاد . در سال ۱۹۹۷ م ، ازهر شش کیلو وات ساعت انرژی برق که در جهان تولید می شد ، یک کبلو وات ساعت آن با استفاده از سوخت هسته ای ، یک کیلو وات ساعت دیگر با به کارگیری منابع آبی ، و چهار کیلو وات ساعت نیز با بهره گیری از سوخت های فسیلی ( نفت ، گاز، زغال سنگ) تامین می شد. در کشورهای اروپایی ، سهم سوخت هسته ای برای تولید انرژی برق به ۳۳% ، یعنی دوبرابر مبانگبن جهانی ، و در فرانسه به ۷۷% می

رسد.تکنولوژی تولید وبهره برداری از سوخت هسته ای یکی از پیچیده ترین و پیشرفته ترین تکنولوژیهای امروزی است که از طیف گسترده ای از علوم و فنون مختلف ( مانند شیمی هسته ای ، مهندسی شیمی، مهندسی فرایند، متالوژی مواد ، متالوژی پودر ، انتقال حرارت ، حرکت شاره ها و غیره ) بهره می گیرد . کیفیت تولید و بهره برداری از سوخت هسته ای در رآکتورها، در چهار دهه گذشته همواره بهبود یافته واستفاده بهینه از این سوخت را بارعایت کامل مسایل ایمنی ممکن کرده است.

چر خه سوخت هسته ای
چرخه سوخت هسته ای چیست؟
اورانیومی که از زمین استخراج می‌شود، بلافاصله قابل استفاده در نیروگاههای تولید انرژی نیست. برای آنکه بتوان بیشترین بازده را از اورانیوم به دست آورد، فرآیندهای مختلفی روی سنگ معدن اورانیوم صورت می‌گیرد تا غلظت ایزوتوپ u-235 که قابل شکافت است، افزایش یابد.
چرخه سوخت اورانیوم نسبت به سوخت های رایج دیگر، از جمله ذغال سنگ، نفت و گاز طبیعی، به مراتب پیچیده تر و متمایزتر است. چرخه سوخت اورانیوم را چرخه سوخت هسته ای نیز می‌گویند. چرخه سوخت هسته ای از دو بخش انتهای جلویی و انتهای عقبی ( front end , Back end ) تشکیل شده است. انتهای جلویی چرخه، مراحلی است که منجر به آماده سازی اورانیوم به عنوان سوخت رآکتور هسته ای می‌شود و شامل استخراج از معدن، آسیاب کردن، تبدیل، غنی سازی و تولید سوخت است.
هنگامی که اورانیوم به عنوان سوخت مصرف شد و انرژی از آن به دست می‌آمد، انتهای عقبی چرخه آغاز می‌شود تا ضایعات هسته ای به انسان و محیط زیست آسیبی نرسانند. این بخش عقبی شامل انبار داری موقتی، بازفرآوری کردن انبار نهایی است.
اکتشاف و استخراج
ذخایر طبیعی اورانیوم، سنگ معدن اورانیوم است که براساس مقدار قابل استحصال از معدن محاسبه می‌شود. با تکنیک‌ها و روش های زمین شناسی، معدن اورانیوم شناسایی می‌شود و نمونه هایی از سنگ معدن به آزمایشگاه فرستاده می‌شود. در آنجا، محلولی از سنگ معدن تهیه می‌کنند و اورانیوم ته نشین شده را مورد بررسی قرار می‌دهند تا بفهمند چه مقدار اورانیوم را می‌توان از آن معدن استخراج کرد و چقدر هزینه می‌برد.
اورانیوم موجود در طبیعت معمولاً از دو ایزوتوپ u-235 و u-238 تشکیل می‌شود که فراوا

نی آنها به ترتیب ۷۱/۰ درصد و ۲۸/۹۹ درصد است.
هنگامی که معدن شناسایی شد، به سه روش می‌توان اورانیوم را استخراج کرد: استخراج از سطح زمین، استخراج ازمعادن زیرزمینی و تصفیه در معدن. دو روش نخست همانند دیگر روش های استخراج فلزات هستند، ولی در روش سوم که در ایالات متحده استفاده می‌شود، سنگ معدن در خود معدن تصفیه می‌شود و اورانیوم بدست می‌آید. سنگ معدن اورانیوم معمولا از اکسید اورانیوم (u3o8) تشکیل شده است و غلظت آن در سنگ معدن بین ۰۵/۰ تا ۳/۰ درصد تغییر می‌کند.
البته این تنها منبع اورانیوم نیست. اورانیوم در برخی معادن فسفات با منشأ دریایی نیز وجود دارد که البته فراوانی بسیار کمی دارد، به طوری که حداکثر به ۲۰۰ ذره در میلیون ذره می‌رسد. از آنجایی که این معادن فسفات مقادیر انبوهی تولید دارند، می‌توان اورانیوم را با قیمت معولی استحصال کرد.
آسیاب کردن
پس از استخراج سنگ معدن، تکه سنگ‌ها به آسیاب فرستاده می‌شود تا خوب خرد شده، خرده سنگ هایی که با ابعاد یکسان تولید شود. اورانیوم توسط اسید سولفوریک از دیگر اتم‌ها جدا می‌شود، محلول غنی شده از اورانیوم تصفیه می‌شود و خشک می‌شود. محصول به دست آمده، کنستانتره جامد اورانیوم است که کیک زرد نامیده می‌شود.
تبدیل
کیک زرد جامد است، ولی مرحله بعد ( غنی سازی ) از تکنولوژی بخصوصی بهره می‌برد که نیازمند حالت گازی است. بنابراین کنستانتره اکسید اورانیوم جامد طی فرآیندی شیمیایی به هگزافلورایداورانیوم ( UF6 ) تبدیل می‌شود. UF6 در دمای اتاق جامد است، ولی در دمایی نه چندان بالا به گاز تبدیل می‌شود.
غنی سازی
برای ادامه یک واکنش زنجیره هسته ای در قلب یک رآکتور آب سبک، غلظت طبیعی اورانیوم ۲۳۵ بسیار اندک است. برای آنکه UF6 به دست آمده در مرحله تبدیل، به عنوان سوخت هسته ای مورد استفاده قرار گیرد، باید ایزوتوپ قابل شکافت آن را غنی کرد. البته سطح غنی سازی بسته به کاربرد سوخت هسته ای متفاوت است. برای یک رآکتور آب سبک، سوختی با ۵ درصد اورانیوم ۲۳۵ مورد نیاز است؛ در حالی که در یک بمب اتمی، سوخت هسته ای باید حداقل ۹۰ درصد غنی شده باشد.
غنی سازی با استفاده از یک یا چند روش جداسازی ایزوتوپ های سنگین و سبک صورت می‌گیرد. در حال حاضر، دو روش رایج برای غنی سازی اورانیوم وجود دارد که عبارتند از انتشار گاز و سنتریفوژ گاز.
در روش انتشار گازی ( دیفیوژن )، گاز طبیعی UF6 با فشار بالا از یک سری سدهای انتشاری عبور می‌کند. این سدها که غشاهای نیمه تراوا هستند، اتمهای سبک تر را با سرعت بیشتری عبور می‌دهند، در نتیجه UF6235 سریع تر از UF6238 عبور می‌کند. با تکرار این فرآیند در مراحل مختلف گازی نهایی به دست می‌آید که غلظت u235 بیشتری دارد. مهم تر

ین عیب این روش این است که جداسازی ایزوتوپ های سبک در هر مرحله نرخ نسبتاً پایینی دارد، لذا برای رسیدن به سطح غنی سازی مطلوب باید این فرآیند را به دفعات زیادی تکرار کرد که این، خود نیازمند امکانات زیاد و مصرف بالای انرژی الکتریکی است و به دنبال آن هزینه عملیات نیز بسیار افزایش خواهد یافت.
در روش سانتریفور گاز، گاز UF6 طبیعی را به مخزن هایی استوایی تزریق می‌کننه اندکی از UF6238 سبک تر است، از مولکول سنگین تر جدا شود.
این فرآیند در مجموعه ای از مخزن‌ها صورت می‌گیرد و در نهایت، اورانیوم با سطح غنی شده مطلوب به دست می‌آید. هر چند روش سنتریفوژ گازی نیازمند تجهیزات گرانقیمتی است، هزینه انرژی آن نسبت به روش قبلی کمتر است.
امروز فناوری های غنی سازی جدیدی نیز توسعه یافته است، که همگی بر پایه استفاده از لیزر پیشرفت کرده اند. این روش‌ها که روش جداسازی ایزوتوپ با لیزر بخار اتمی (AVLIS) و جداسازی ایزوتوپ با لیزر مولکولی (MLIS) نام دارند، می‌توانند مواد خام بیشتری رادر هر مرحله غنی کنند و سطح غنی سازی آنها نیز بالاتر است.
ساخت میله های سوخت
تولید میله سوخت، آخرین مرحله انتهای جلویی در چرخه سوخت هسته ای است. اورانیوم غنی شده که هنوز به شکل UF6 است، باید به پودر دی اکسید اورانیوم (UO2) تبدیل شود تا به عنوان سوخت هسته ای قابل استفاده باشد، پودر UO2 سپس فشرده می‌شود و به شکل قرص در می‌آید. قرص های در معرض حرارت با دمای بالا قرار می‌گیرند تا به قرص های سرامیکی تبدیل شوند. پس از طی چند فرآیند فیزیکی، قرص هایی سرامیکی با ابعاد یکسان حاصل می‌شود. حال، متناسب با طراحی رآکتور و نوع سوخت مورد نیاز، این قرص های کوچک را در دسته دسته کرده و در لوله ای بخصوص قرار می‌دهند. این لوله از آلیاژ بخصوصی ساخته شده است که در برابر خوردگی بسیار مقاوم است و در عین حال از رسانایی حرارتی بسیار بالایی برخوردار است. حال میله سوخت آماده شده است و برای استفاده در رآکتور به نیروگاه فرستاده می‌شود.
انتهای عقبی چرخه سوخت هسته ای: مدیریت زباله های هسته ای
در نیروگاه هسته ای هم مثل دیگر فعالیت های بشری، ضایعاتی تولید می‌شود که به دلیل حساسیت مضاعف زباله های رادیواکتیو، مدیریت زمان ضایعات باید تحت قوانین و محدودیت های خاصی صورت بگیرد.
در هر هشت مگاوات ساعت انرژی الکتریکی تولید شده در نیروگاه هسته ای، ۳۰

 

گرم زباله رادیواکتیو به وجود می‌آید. برای تولید همین مقدار برق با استفاده از زغال سنگ پر کیفیت، هشت هزار کیلوگرم دی اکسید کربن تولید می‌شود که در دما و فشار جو، ۳ استخر المپیک را پر می‌کند. می‌بینید حجم زباله های رادیواکتیو بسیار کمتر است، ولی خطر آنها به مراتب بیشتر است و مراقبت از آنها به مراتب بیشتر است و مراقبت از آنها ضرورتی تر و دشوارتر. زباله های رادیواکتیو براساس مقدار و نوع ماده رادیواکتیو به ۳ گروه تقسیم می‌شوند:
الف- سطح پایین: لباس حفاظتی، لوازم، تجهیزات و فیلترهایی که حاوی مواد رادیواکتیو با عمر کوتاه هستند. این‌ها نیازی به پوشش حفاظتی ندارند و معمولاً فشرده شده یا آتش زده می‌شوند و در چاله های کم عمق دفن شده و انبار می‌شوند.
ب- سطح متوسط: رزین ها، پس مانده های شیمیایی، پوشش میله سوخت و مواد نیروگاههای برق هسته ای جزو زباله های سطح متوسط طبقه بندی می‌شوند. اینها عموما عمر کوتاهی دارند، ولی نیاز به پوشش محافظ دارند. این زباله‌ها را می‌توان درون بتون قرار داد و در مخزن زباله‌ها گذاشت.
ج- سطح بالا: همان سوخت مصرف شده راکتورها است و نیاز به پوشش حفاظتی و سردسازی دارند. مراحل مدیریت این ضایعات عبارتند از:
انبارداری موقتی
سوخت مصرف شده که از رآکتور خارج می‌شود، بسیار داغ و رادیواکتیو است و تشعشع و یونهای فراوانی را می‌تاباند. از این رو باید هم آن را سرد کرد و هم از تابیدن پرتوهای رادیواکتیو آن به محیط جلوگیری کرد. در کتار هر رآکتور، استخرهایی برای انبار کردن سوخت مصف شده وجود دارد. این استخرها، مخزن هایی بتونی مسلح به لایه های فولاد زنگ نزن هستند که ۸ متر عمق دارند و پر از آب هستند. آب هم میله های سوخت مصرف شده را خنک می‌کند و هم به عنوان پوششی حفاظتی در برابر تابش رادیواکتیو عمل می‌کند. به مرور زمان، شدت گرما و تابش رادیواکتیو کاهش می‌یابد، به طوری که پس از چهل سال، به یک هزارم مقدار اولیه ( زمانی که از رآکتور خارج شده بود ) می‌رسد.
بازفرآوری انبارنهایی
۳ درصد سوخت مصرف شده در یک رآکتور آب سبک را ضایعات بسیار خطرناک رادیواکتیو است. این مواد را می‌توان با روش های شیمیایی از یکدیگر جدا کرد و اگر شرایط اقتصادی و قوانین حقوقی اجازه دهد، می‌توان سوخت مصرف شده را برای تهیه سوخت هسته ای جدید بازیافت کرد.
کارخانه هایی در فرانسه و انگلستان وجود دارند که مرحله بازفرآوری سوخت نیروگاههای کشورهای اروپای و ژاپن را انجام می‌دهند. البته این کار در ایالات متحده ممنوع است.
رایج ترین شیوه بازفرآوری، purex نام دارد که مخفف عبارت جداسازی اورانیوم و پلوتونیوم است. ابتدا میله های سوختی را از یکدیگر جدا می‌کنند و در اسید نیتریک حل می‌کنند؛ سپس با استفاده از مخلوطی از فسفات تری بوتیل و یک حلال هیدرو کربن، اورانیوم و پلوتونیوم مصرف نشده را جدا می‌کنند و به عنوان سوخت جدید به مراحل تهیه سوخت می‌فرستند. ضایعات هسته ای

سطح بالا را پس از جدا سازی، حرارت می‌دهند تا به پودر تبدیل شود. پس از فرآیند که آهی کردن خوانده می‌شود، پودر را به شیشه مخلوط می‌کنند تا ضایعات را در محفظه ای محبوس کنند. این فرآیند شیشه سازی نام دارد. شیشه مایع برای ذخیره سازی درون محفظه هایی از جنس فولاد ضد زنگ قرار می‌گیرند و این محفظه‌ها را در منطقه ای پایدار ( از نظر جغرافیایی ) انبار می‌کنند. پس از یک هزار سال، شدت تابش های رادیواکتیو ضایعات هسته ای به مقدارچرخه سوخت هسته ای: از استخراج اورانيوم تا توليد انرژی

 

مقدمه: استخراج اورانيوم از معدن

اورانيوم که ماده خام اصلی مورد نياز برای توليد انرژی در برنامه های صلح آميز يا نظامی هسته ای است، از طريق استخراج از معادن زيرزمينی يا سر باز بدست می آيد. اگر چه اين عنصر بطور طبيعی در سرتاسر جهان يافت ميشود اما تنها حجم کوچکی از آن بصورت متراکم در معادن موجود است.
هنگامی که هسته اتم اورانيوم در يک واکنش زنجيره ای شکافته شود مقداری انرژی آزاد خواهد شد.
برای شکافت هسته اتم اورانيوم، يک نوترون به هسته آن شليک ميشود و در نتيجه اين فرايند، اتم مذکور به دو اتم کوچکتر تجزيه شده و تعدادی نوترون جديد نيز آزاد ميشود که هرکدام به نوبه خود ميتوانند هسته های جديدی را در يک فرايند زنجيره ای تجزيه کنند.
مجموع جرم اتمهای کوچکتری که از تجزيه اتم اورانيوم بدست می آيد از کل جرم اوليه اين اتم کمتر است و اين بدان معناست که مقداری از جرم اوليه که ظاهرا ناپديد شده در واقع به انرژی تبديل شده است، و اين انرژی با استفاده از رابطه E=MC۲ يعنی رابطه جرم و انرژی که آلبرت اينشتين نخستين بار آنرا کشف کرد قابل محاسبه است.
اورانيوم به صورت سه ايزوتوپ مختلف در طبيعت يافت ميشود. دو گونه اصلی آن اورانيوم U۲۳۵ و U۲۳۸ است که هر دو دارای تعداد پروتون يکسانی بوده و تنها تفاوتشان در سه نوترون اضافه ای است که در هسته U۲۳۸ وجود دارد. اعداد ۲۳۵ و ۲۳۸ بيانگر مجموع تعداد پروتونها و نوترونها در هسته هر کدام از اين دو ايزوتوپ است.
برای بدست آوردن بالاترين بازدهی در فرايند زنجيره ای شکافت هسته بايد از اورانيوم ۲۳۵ استفاده کرد که هسته آن به سادگی شکافته ميشود. هنگامی که اين نوع اورانيوم به اتمهای کوچکتر تجزيه ميشود علاوه بر آزاد شدن مقداری انرژی حرارتی دو يا سه نوترون جديد نيز رها ميشود که در صورت برخورد با اتمهای جديد اورانيوم بازهم انرژی حرارتی بيشتر و نوترونهای جديد آزاد ميشود.
اما بدليل “نيمه عمر” کوتاه اورانيوم ۲۳۵ و فروپاشی سريع آن، اين ايزوتوپ در طبيعت بسيار نادر است بطوری که از هر ۱۰۰۰ اتم اورانيوم موجود در طبيعت تنها هفت اتم از نوع U۲۳۵ بوده و مابقی از نوع سنگينتر U۲۳۸ است.
کشورهای اصلی توليد کننده اورانيوم
استراليا
چين
کانادا

قزاقستان
ناميبيا
نيجر
روسيه
ازبکستان
سنگ معدن اورانيوم بعد از استخراج، در آسيابهائی خرد و به گردی نرم تبديل ميشود. گرد بدست آمده سپس در يک فرايند شيميائی به ماده جامد زرد رنگی تبديل ميشود که به کيک زرد موسوم است. کيک زرد دارای خاصيت راديو اکتيويته است و ۶۰ تا ۷۰ درصد آنرا اورانيوم تشکيل ميدهد.
دانشمندان هسته ای برای دست يابی هرچه بيشتر به ايزوتوپ نادر U۲۳۵ که در توليد انرژی هسته ای نقشی کليدی دارد، از روشی موسوم به غنی سازی استفاده می کنند. برای اين کار، دانشمندان ابتدا کيک زرد را طی فرايندی شيميائی به ماده جامدی به نام هگزافلوئوريد اورانيوم تبديل ميکنند که بعد از حرارت داده شدن در دمای حدود ۶۴ درجه سانتيگراد به گاز تبديل ميشود.

هگزافلوئوريد اورانيوم که در صنعت با نام ساده هگز شناخته ميشود ماده شيميائی خورنده ايست که بايد آنرا با احتياط نگهداری و جابجا کرد. به همين دليل پمپها و لوله هائی که برای انتقال اين گاز در تاسيسات فراوری اورانيوم بکار ميروند بايد از آلومينيوم و آلياژهای نيکل ساخته شوند. همچنين به منظور پيشگيری از هرگونه واکنش شيميايی برگشت ناپذير بايد اين گاز را دور از معرض روغن و مواد چرب کننده ديگر نگهداری کرد.

کيک زرد دارای خاصيت راديو اکتيويته است و ۶۰ تا ۷۰ درصد آنرا اورانيوم تشکيل ميدهد

غنی سازی:
هدف از غنی سازی توليد اورانيومی است که دارای درصد بالايی از ايزوتوپ U۲۳۵ باشد.
اورانيوم مورد استفاده در راکتورهای اتمی بايد به حدی غنی شود که حاوی ۲ تا ۳ درصد اورانيوم ۲۳۵ باشد، در حالی که اورانيومی که در ساخت بمب اتمی بکار ميرود حداقل بايد حاوی ۹۰ درصد اورانيوم ۲۳۵ باشد.
يکی از روشهای معمول غنی سازی استفاده از دستگاههای سانتريفوژ گاز است.
سانتريفوژ از اتاقکی سيلندری شکل تشکيل شده که با سرعت بسيار زياد حول محور خود می چرخد. هنگامی که گاز هگزا فلوئوريد اورانيوم به داخل اين سيلندر دميده شود نيروی گريز از مرکز ناشی از چرخش آن باعث ميشود که مولکولهای سبکتری که حاوی اورانيوم ۲۳۵ است در مرکز سيلندر متمرکز شوند و مولکولهای سنگينتری که حاوی اورانيوم ۲۳۸ هستند در پايين سيلندر انباشته شوند. ديگری دميده ميشود تا درجه خلوص آن باز هم بالاتر رود. اين عمل بارها و بارها توسط سانتريفوژهای متعددی که بطور سری به يکديگر متصل ميشوند تکرار ميشود تا جايی که اورانيوم ۲۳۵ با درصد خلوص مورد نياز بدست آيد.