انواع موشک های ضد زره

در دنياي خمپاره اندازها ، نام M252 بيانگر اعتبار و ارزش خاصي است. اين خمپاره انداز با بردي متوسط و دقتي كم نظير ، در ميادين رزم سلاحي موثر و كشنده مي باشد. در دهه ۸۰ ، ارتش امريكا نيازمند يك خمپاره انداز ۸۱ ميليمتري موثر و دقيق بود. در سال ۱۹۸۶ ، M252 به عنوان خمپاره انداز استاندارد ۸۱ ميليمتري در ارتش امريكا پذيرفته و جايگزين انواع قبلي گرديد.
در طراحي و ساخت M252 ، علاوه بر استفاده از استانداردهاي ارتش امريكا ، از استانداردهاي ارتش انگليس در زمينه خمپاره اندازهاي ۸۱ ميليمتري كه در دهه ۷۰ تهيه شده بود

، استفاده شاياني گرديد و در حال حاضر ، كمتر ارتشي در دنيا وجود دارد كه به اين سلاح مجهز نباشند.
يكي از موارد تمايز اين خمپاره انداز با ساير مدل هاي هم خانواده ، طرح دهانه آن است. در دهانه اين خمپاره انداز از يك طرح ابتكاري موسوم به BAD (مخفف BLAST ATTENUATION DEVICE) استفاده شده است كه وظيفه آن ، كاهش صداي سوت پرتاب گلوله است كه اين امر ، باعث ايجاد يك وضعيت مناسب براي خدمه اين سلاح از لحاظ صوتي مي شود.

اين سلاح براي واحدهاي هوابرد ، پياده نظام و ساير واحدهاي نظامي ، بسيار ايده آل و ارزشمند است. براي استفاده موثر و سريع از اين سلاح ، به سه خدمه نياز است. حداكثر برد موثر آن ۵۷۰۰ متر و كمترين برد قابل شليك حدود ۸۰ متر مي باشد. با اين سلاح ، در يك دقيقه حداكثر ۳۳ گلوله مي توان شليك كرد. اما براي شليك مداوم ، تنها ۱۶ گلوله در د

قيقه مي توان شليك كرد. زاويه شليك اين خمپاره انداز ، از ۴۵ تا ۸۵ درجه قابل تنظيم است.
M252 علاوه بر استفاده از مهمات كلاسيك ، از مهماتي با قدرت انفجاري بالا نيز مي تواند استفاده كند. M252 از سيستم نشانه روي استاندارد خمپاره اندازهاي ۶۰ ميليمتري M64 استفاده مي كند. وزن اين خمپاره انداز به همراه دو پايه ، سيستم نشانه روي و ساير قطعات ، در حدود ۴۰٫۵ كيلوگرم مي شود كه نسبت به كارايي قدرت آن ، بسيار ايده آل و مناسب است.

انگیخته شود، اشعه ايكس
تاریخچه
در سال ۱۸۹۵ ، درخشش کوتاه صفحه فسفرسانتی که در گوشه‌ای از آزمایشگاه نیمه تاریک بررسی اشعه کاتدیک قرار داشت، ذهن آماده و خلاق رنتگن که در آن زمان استاد فیزیک بود، متوجه پرتوهای تازه‌ای نمود که از حباب شیشه‌ای لامپهای کاتودیک بیرون زده و بی آنکه به چشم دیده شود به اطراف پراکنده می‌شوند. آن چه مایه شگفتی رنتگسن شده بود، نفوذ این پرتوها از دیواره شیشه‌ای لامپ به بیرون و تأثیر آن روی صفحه فاوئورسانت در گوشه‌ای نسبتا دور از لامپ در آزمایشگاه بود. رنتگن به بررسیهای خود درباره کشف تازه که آن پرتو ایکس نامید (بخاطر فروتنی) ، ادامه داد. بعدها این اشعه رنتگن نامیده شد.

طیف اشعه ایکس
اشعه تولید شده بوسیله لامپ اشعه ایکس یک طول موج ندارد. بلکه شامل گستره‌ای از طول موجهاست. پرتوهای ایکس بوسیله دو نوع فرایند تولید می‌شوند:

• شتاب منفی الکترونها در موقع برخورد با انتهای ماده هدف پرتوهای ایکسی با طول موجهای متفاوت تولید می‌کند. این پرتو “سفید” یا نوار پیوسته فرکانسها در طیف اشعه ایکس را به عنوان تابش ترمزی می‌شناسند.
• برخورد الکترون با اتم هدف موجب جابجایی الکترون مداری در اتم هدف و راندن آن به حالت پر انرژی‌تری می‌شود. این عمل را برانگیزش می‌نامند.

o هنگامی که الکترون مداری پر انرژی به موقعیت مداری نخستین خود برمی‌گردد، رها شدن انرژی بصورت گسیل پرتوی با فرکانس خاصی خواهد بود. این پرتو شدت خیلی بیشتری نسبت به پرتو “سفید” زمینه خواهد داشت.
o معمولا برای هر ماده هدف معینی بیش از یک طول موج اشعه ایکس وجود دارد. طول موج پرتو تولید شده بوسیله لامپ اشعه ایکس ، حد پایینی دارد که با ولتاژ لامپ نسبت عکس دارد. کمترین طول موج برحسب نانومتر (nm) از رابطه زیر بدست می‌آید. که در آن V ولتاژ لامپ می‌باشد.
λmin = 1239.5/V

o پرتو حد پایینی طول موج طیف ، بیشترین اهمیت را در پرتو نگاری دارد. زیرا توانایی نفوذ آن بیشتر است.
مشخصه‌های بارز اشعه ایکس
• بزرگی جریان لامپ بر پخش طول موج اشعه ایکس تولید شده تأثیر ندارد. اما بر روی شدت پرتو موثر است.
• طول موج اشعه ایکس یا اشعه گاما بسیار مهم است. با کاهش طول موج ، نفوذپذیری پرتو به درون محیط افزایش می‌یابد. به بیان دیگر در مقایسه با پرتوی با طول موج بزرگتر ، پرتوی با طول موج بسیار کوتاه قادر به نفوذ به ماده معینی با ضخامت بیشتر و یا چگالی بیشتر خواهد بود. بنابراین ، اگر حداقل طول موج پرتو تولید شده با افزایش ولتاژ لامپ کاهش یابد، نفوذپذیری پرتو افزایش خواهد یافت.

بررسی کمی اشعه ایکس
• پرتو ناشی از لامپ ۲۰۰ کیلوولتی به درون فولادی به ضخامت حدود ۲۵mm نفوذ می‌کند.
• اگر ولتاژ لامپ به ۱Mv افزایش یابد، پرتو به درون فولادی به ضخامت حدود ۱۳۰mm نفوذ خواهد کرد.
• حد بالای عملی برای لامپهای اشعه ایکس رایج در حدود ۱۰۰۰Kv است و این امر سبب تولید اشعه ایکس با کوتاهترین طول موج می شود. این پرتو انرژی فوتونی تقریبا برابر ۱Mev دارد.
• پرتو ایکس با انرژی فوتونی تا ۳۰Mev را با استفاده از الکترونهای پرانرژی (الکترونهای سریع) بوجود آمده بوسیله مولد واندوگراف شتاب دهنده خطی یا چشمه بتاترون می‌توان تولید کرد.

نفوذ پذیری پرتوهای ایکس تولید شده از پرتوهای گاما کمتر بوده اما برای پرتوهای ایکس تولید شده در لامپهای اشعه ایکس بوسیله چشمه‌های پرانرژی در خصوص فولاد نیز دیده می‌شود. باید توجه کرد که بیشترین ضخامتهای استفاده از زمانهای پرتودهی چند دقیقه‌ای و فیلمی با سرعت متوسط می‌توان مورد بررسی قرار داد. مقاطع ضعیفتر را با استفاده از زمانهای پرتودهی طولانی و فیلمی با سرعت زیاد می‌توان بازرسی کرد.

نحوه تولید اشعه ایکس

پرتوهای ایکس را بوسیله بمباران هدفی فلزی با باریکه‌ای از الکترونهای سریع تولید می کنند. قطعات اصلی لامپ اشعه ایکس شامل کاتد برای گسیل الکترونها و آند به عنوان هدف می‌باشد، که هر دو درون لامپ خلا جای گرفته‌اند. با توجه به میزان نفوذ اشعه ایکس و فرکانس مربوطه‌اش از لامپهای اشعه ایکس متنوعی در کارهای تحقیقاتی ، پزشکی ، صنعت و … استفاده می‌کنند.

طیف نور گسیل شده از بخار هر عنصر را طیف اتمی آن عنصر می‌نامند. پس می‌توان گفت که طیف اتمی عنصرهای مختلف با هم تفاوت دارد.

طیف اتمی
دیدکلی
همانطور که می‌دانیم نیوتون برای نخستین بار با گذراندن نور خورشید از منشور ، طیف نور سفید را تشکیل داد. نیوتون نشان داد که نور سفید آمیزه‌ای از رنگهای مختلف است و گسترده طول موجی این رنگها از ۰٫۴ میکرومتر (بنفش) تا ۰٫۷ میکرومتر (قرمز) است. طیف نور سفید یک طیف پیوسته است. به همین ترتیب می‌توان طیف هر نوری را توسط پاشندگی در منشور شناسایی کرد. اما علت اینکه در طیف اتمی خطوط مختلفی دیده می‌شود، چیست؟

خطوط طیفی
طیف اتمی مستقیما به ترازهای انرژی اتم نسبت داده می‌شود. هر خط طیفی متناظر یک گذار خاص بین دو تراز انرژی یک اتم است. پس آنچه در طیف نمایی دارای اهمیت است، تعیین ترازهای انرژی یک اتم به کمک اندازه گیری طول موجهای طیف خطی گسیل شده از اتمها است. پایین ترین تراز انرژی ، حالت پایه و همه ترازهای بالاتر حالتهای برانگیخته نامیده می‌شوند. موقعی که یک اتم از حالت بر انگیخته بالاتر به یک حالت برانگیخته پایین تر گذاری را انجام می‌دهد. یک فوتون متناظر به یک خط طیفی گسیل می‌شود.

طیف نشری
اگر جسمی بتواند نور تولید کند و نور تولید شده را از منشوری عبور دهیم، طیفی بدست می‌آید که طیف نشری نامیده می‌شود. اگر رنگهای طیف حاصل بهم متصل باشند، طیف نشری اتصالی و اگر فاصله‌ای بین آنها باشد، طیف نشری انفصالی یا خطی می‌نامند. به عنوان مثال لامپ حاوی بخار بسیار رقیق را در نظر بگیرید. این لامپ بصورت لوله باریک شیشه‌ای است که درون آن یک گاز رقیق در فشار کم وجود دارد.

دو الکترود به نامهای کاتد و آند در دو انتهای لوله قرار دارند. اگر بین این دو الکترود ، ولتاژ بالایی برقرار شود، اتمهای گاز درون لامپ شروع به گسیل نور می‌کنند. اگر این بخار مربوط به بخار جیوه باشد، این گسیل به رنگ نیلی – آبی است. اگر این نور را از منشور بگذرانیم و طیف آن را تشکیل دهیم می‌ینیم که این طیف پیوسته نیست. بلکه تنها از چند خط رنگی جدا از هم با طول موجهای معین تشکیل شده است.

طیف جذبی
در سال ۱۸۱۴ میلادی فرانهوفر فیزیکدان آلمانی کشف کرد که اگر به دقت به طیف خورشید بنگریم، خطهای تاریکی در طیف پیوسته آن مشاهده خواهیم کرد. این مطلب نشان می‌دهد که بعضی از طول موجها در نوری که از خورشید به زمین می‌رسد، وجود ندارد و به جای آنها ، در طیف پیوسته نور خورشید خطهای تاریک (سیاه) دیده می‌شود. اکنون می‌دانیم که گازهای عنصرهای موجود در جو خورشید ، بعضی از طول موجهای گسیل شده از خورشید را جذب می‌کنند و نبود آنها در طیف پیوسته خورشید به صورت خطهای تاریک ظاهر می‌شود. در اواسط سده نوزدهم معلوم شد که اگر نور سفید از داخل بخار عنصری عبور کند و سپس طیف آن تشکیل ش

ود، در طیف حاصل خطوط تاریکی ظاهر می‌شود. این خطوط توسط اتمهای بخار جذب شده‌اند.
طیف اتمی از دیدگاه فیزیک کلاسیک

درک ساز و کار جذب و گسیل نور بوسیله اتمها از دیدگاه فیزیک کلاسیک آسان است. زیرا بنابر نظریه‌های کلاسیکی یک اتم در صورتی نور گسیل می‌کند که به طریقی مانند برخورد با سایر اتمها یا توسط میدان الکتریکی به الکترونهای آن انرژی داده شود، در نتیجه الکترونها با به دست آوردن انرژی ارتعاش می‌کنند و امواج الکترومغناطیس بوجود می‌آورند، یعنی نور گسیل می‌کنند. اما این که چرا اتمهای همه عنصرها موج الکترومغناطیسی با طول موجهای یکسان نمی‌کنند و این که چرا هر عنصر طول موج خاص خود را دارد، ا ز دیدگاه فیزیک کلاسیک قابل توجیه نیست.

در مورد جذب نور هم ، از دیدگاه فیزیک کلاسیک ، می‌توان گفت که وقتی نور به یک اتم می‌تابد، نوسان میدان الکتریکی ناشی از نور فروری باعث می‌شود که الکترونهای اتم شروع به ارتعاش کنند و نور فرودی را جذب کنند. ولی باز هم در این دیدگاه هیچ توجیه قانع کننده‌ای برای این که چرا هر عنصر تنها طول موجهای خاصی را که مشخصه آن عنصر است جذب می‌کند و بقیه طول موجها را جذب نمی‌کند؟ وجود ندارد.

رابطه ریدبرگ – بالمر
طیف اتمی هیدروژن ، اولین طیفی بود که بطور کامل مورد تجزیه و تحلیل قرار گرفت. آنگستروم تا سال ۱۸۸۵ میلادی طول موجهای چهار خط از طیف اتم هیدروژن را با دقت زیاد اندازه گرفت. بالمر که یک معلم سوئیسی بود، وی این اندازه گیریها را مطالعه کرد و نشان داد که طول موج خطهای این طیف را می‌توان با دقت بسیار زیاد بدست آورد. توفیق بالمر در خصوص یافتن رابطه‌ای برای خطهای طیف اتم هیدروژن در ناحیه مرئی موجب شد، که تلاشهای بیشتری در جهت یافتن خطوط دیگر طیف اتم هیدروژن صورت گیرد. کار عمده در زمینه جستجو برای طیف کامل اتم هیدروژن توسط ریدبرگ در حدود سال ۱۸۵۰ میلادی انجام شد.

نتیجه
۱٫ هم در طیف گسیلی و هم در طیف جذبی هر عنصر ، طول موجهای معینی وجود دارد که از ویژگیهای مشخصه آن عنصر است. یعنی طیفهای گسیلی و جذبی هیچ دو عنصری مثل هم نیست.
۲٫ اتم هر عنصر دقیقا همان طول موجهایی از نور سفید را جذب می‌کند که اگر دمای آن به اندازه کافی بالا رود و یا به هر صورت دیگر بر آنها را تابش می‌کند.