متالوگرافي، شاخه اي از علم متالوژي است كه شامل آماده سازي و مطالعه سطحئ يك نمونه فلزي مي‌باشد. در اين بررسي و مطالعه، كه با استفاده از ابزاري بنام ميكروسكوپ صورت مي‌گيرد، اطلاعاتي راجع به ساختار دروني قطعات فلزي بدست مي‌آيد.

بطور كلي، مطالعات ساختاري فلزات و آلياژها، در زير ميكروسكوپ در دو مقياس به شرح زير انجام مي‌گردد:
۱) بررسي و مطالعه ماكروسكوپي
Macroscopic Examination
2) بررسي و مطالعه ميكروسكوپي
Microscopic Examination

مطالعات ماكروسكوپي ساختار فلزات و آلياژها
در اين نوع برسي، ساختار فلزات د رزير ميكروسكوپ و با بزرگنمايي كم (تا حدود ۱۰ برابر) مورد مطالعه قرار مي‌گيرد. اين امر موجب مي‌شود تا بر روي سطح وسيعي از نمونه مورد آزمايش يك مطالعه اجمالي انجام مي‌شود و اغلب نيز اطلاعات اوليه اي راجع به كيفيت قطعه، يعني يكپارچگي فلز و ساختار آن، انجماد و كيفيت عمليات نهايي(ريخته گري، كار مكانيكي، جوشكاري و…)بدست آيد.

بدليل پايين بودن بزرگنمايي، بررسيهاي ماكروسكوپي در تحقيقات فلزات، بيشتر در مراحل ابتدايي و اوليه بكار گرفته مي‌شوند و مطالعات دقيق تر و نهايي، ديگر در اين مقياس قابل بررسي نمي باشند.
مطالعه ساختارهاي ماكروسكوپي، مي‌تواند هم‌بطور مستقيم بر روي سطح فلز(به عنوان مثال بر روي سطح قطعات ريخته گري يا قطعات آهنگري شده) صورت مي‌گيرد و هم‌بر روي مقاطع شكست و نيز بعد از انجام عمليات سطحي ويژه بر روي سطح قطعه انجام مي‌شود. در زير بطور خلاصه، به موارد كاربرد متالوگرافي در بررسي هاي ماكروسكوپي ساختار فلزات و آلياژها اشاره مي‌گردد:
 بررسي مقاطع شكست قطعات به منظور تعيين علل شكست و نيز نوع شكست از نقطه نظر اينكه، اين شكست از نوع تردBrittle Fracture بوده و يا از اينكه و يا از نوع نرم Ductile Fracture مي‌باشد.
لازم به ذكر است مقطع شكست ترد، به صورت صيقلي ديده مي‌شود، در حاليكه مقطع شكست نرم، بدليل وجود ناهمواري(پستي و بلندي) تيره ديده مي‌شود. شكست نرم با تغيير فرم پلاستيك همراه است.

 تعيين حفره هاي انقباضي، حفره هاي گازي، شكافها و محفظه هاي تشكيل شده در فلز ريخته شده(شمش‌ها يا قطعات ريختگي) كه در اثر شرايط نامناسب ذوب و ريخته گري و انجماد حاصل مي‌شوند.

 تركهاي تشكيل شده در فلز نورد يا آهنگري شده، ذر حين انجام كار مكانيكي ياعمليات حرارتي .
 محفظه‌ها و مكهاي گازي كه ضمن جوشكاري در محل جوش بوجود مي‌ايند.

مطالعات ميكروسكوپي ساختار فلزات و آلياژها
مطالعه ساختار دروني موارد در زير ميكروسكوپ را، تحت بزرگنمايي هاي بالا، مطالعه ميكروسكوپي و ساختار مشاهده شده در چنين حالتي، ساختار ميكروسكوپي مي‌نامند.
بر حسب بزرگنمايي مورد نياز مي‌توان فازهاي يك ساختار، تعداد، شكل و توزيع آنها را با استفاده از ميكروسكوپ هاي نوري و الكتريكي مورد بررسي و مزالعه قرار داد.
لازم به ذكر مي‌باشد كه نمونه‌ها در اين نوع بررسي ها، بايستي بعد از انجام عمليات سطحي، مورد مطالعه قرار گيرند.

برخي از كاربردهاي متالوگرافي در بررسي ميكروسكوپي ساختار مواد فلزي به شرح زير مي‌باشد:
 تعيين و تشخيص فازهاي تعادلي و غير تعادلي
 تعيين روش توليد و عمليات انجام شده بر روي قطعه
 متالوگرافي كمي(تعيين اندازه دانه‌ها و آخالها، بويژه تعيين اندازه دانه هاي فاز زمينه و يا تعداد آخالهاي موجود در يك آلياژ)
براي تعيين اندازه دانه، ساختار ميكروسكوپي در يك بزرگنمايي(x100) با مقياس هاي استاندارد مقايسه مي‌شود. در اين اندازه گيري، تعداد دانه‌ها در واحد سطح مقطع ميكروسكوپي، شمارش شده و در نهايت قطر متوسط استاندارد يك دانه يا تعداد دانه‌ها در mm31 فلز محاسبه مي‌شود.
محاسبات مربوط به فاكتورهاي ذكر شده جهت تعيين اندازه دانه، در جدول زير نشان داده شده است.(جدول ۳)
لازم به ذكر است كه در مقياس هاي استاندارد، به هر اندازه دانه يك شماره نسبت داده مي‌شود كه در حقيقت نشان دهنده مشخصات دانه بندي يك ساختار مي‌باشد.
Table3: Parameters of Steel Struture with Various Grain Numbers

Grain number Average area of grain mm2 Average numbers of grains per mm2 of microseetion Average numbers of

grains per mm2 Average caicutated diameter of grain Average standard
Diameter mm
-3 1.024 1 1 1 0.875
-2 0.512 2 2.7 0.691 0.65
-1 0.256 4 8 0.5 0.444
0 0.128 8 21 0.352 0.313
1 0.064 16 64 .025 0.222
2 0.032 32 179 0.177 0.167
3 0.016 64 512 0.125 0.111
4 0.008 128 1446 0.088 0.0788
5 0.004 256 4006 0 0.0533

۶ ۰٫۰۰۲ ۵۱۲ ۱۱۴۱۷ ۰٫۰۱۱ ۰٫۰۳۹۱
۷ ۰٫۰۰۱ ۱۰۲۴ ۳۲۷۶۸ ۰٫۰۳۱ ۰٫۰۲۶۷
۸ ۰٫۰۰۰۵ ۲۰۴۸ ۹۲۱۶۰ ۰٫۰۲۲ ۰٫۰۱۹۶
۹ ۰٫۰۰۰۲۵ ۴۰۹۶ ۲۶۲۱۲۲ ۰٫۰۱۵ ۰٫۰۱۳۳
۱۰ ۰٫۰۰۰۱۲۵ ۸۱۹۲ ۷۳۷۲۸۰ ۰٫۰۱۲ ۰٫۰۰۹۹
۱۱ ۰٫۰۰۰۰۴۶۲ ۱۶۳۸۴ ۲۰۹۷۱۵۲ ۰٫۰۰۷۹ ۰۰٫۶۹
۱۲ ۰٫۰۰۰۰۳۲ ۳۲۷۶۸ ۵۹۳۰۸۰۸ ۰٫۰۰۵۶ ۰٫۰۰۴۹
۱۳ ۰٫۰۰۰۰۱۶ ۶۵۵۳۶ ۱۶۷۷۷۲۱۶ ۰٫۰۰۳۹ ۰٫۰۰۳۲
۱۴ ۰٫۰۰۰۰۰۸ ۱۳۱۰۷۲ ۴۷۴۴۸۰۶۱ ۰٫۰۰۲۷ ۰٫۰۰۲۳

وسايل و تجهيزات مورد استفاده در متالوگرافي
ميكروسكوپ نوري، ميكروسكوپ الكتروني
مشاهده ساختار ميكروسكوپي مواد اغلب با دو وسيلهخ ميكروسكوپ نوري و ميكروسكوپ الكتروني صورت مي‌گيرد. حوزه بزرگنمايي اين دو ميكروسكوپ نوري بزرگنمايي در حد بين ۲۰تا ۲۰۰۰مرتبه دارد و براي مطالعه مواردي نظير ساختاري ميكروسكوپي(دانه هاي جسم) مورد استفاده قرار مي‌گيرد.

در حاليكه در تحقيقات عالي كه نياز به بزرگنمايي هاي بسيار بالا مي‌باشد از ميكروسكوپ الكتروني استفاده مي‌شود. ميكروسكوپ الكتروني امروزه از مدرنترين دستگاه هاي تحقيقاتي است كه بزرگنمايي آن حدود ۳۰۰۰۰ مرتبه است و البته هر روزه ميكروسكوپ هاي قويتر و گرانتر ساخته شده و در اختيار مراكز تحقيقاتي جهان قرار مي‌گيرد.

ميكروسكوپ نوري
ميكروسكوپ نوري دستگاه آشنايي است كه با طرحهاي گوناگون به بازار عرضه شده است. اين ميكروسكوپ‌ها بر حسب يكي از دو حالت عبور نور از داخل نمونه و يا بازتاب (انعكاس) آن از سطح نمونه به دو دسته عبوري(شفاف) و انعكاسي طبقه بندي مي‌شوند.

در متالوگرافي و شناخت ساختار ميكروسكوپي مواد و فلزات چون بيشتر مواد كدر هستند لذا نور از آنها عبور نمي كند، در نتيجه در متالوگرافي بيشتر از ميكروسكوپ انعكاسي استفاده مي‌شود. شمايي از اين دستگاه در شكل(۲۵) مشاهده مي‌شود.
شكل-۲۵
اولين مرحله آماده كردن نمونه براي مشاهده زير ميكروسكوپ، ساييدن و پرداخت كردن آن تا مرحله آينه اي است، در اين وضعيت تمام قسمتهاي سطح نمونه، نور را به داخل عدسي منعكس مي‌كنند، در نتيجه هيچگونه ساختار ميكروسكوپي مشاهده نمي شود.

با عمل اچ كردن(حك كردن) مرز بين دانه‌ها مرئي مي‌شوند. معمولاً براي انجام اين كار، سطح پرداخت شده را در معرض تأثير نوعي ماده شيميايي قرار مي‌دهند. تأثير ماده شيميايي روي نمونه، با خوردن مرز بين دانه‌ها شروع مي‌شود. مرز بين دانه‌ها در اثر خورده شدن بصورت شيارهاي ظاهر مي‌شود. نورهاي منعكس شده از شيارهايي ظاهر مي‌شود. نورهاي منعكس شده از شيارها تغيير مسير داده و به عدسي چشمي نمي رسد، در نتيجه مرز يبن دانه به صورت خطوط تيره ظاهر مي‌شوند.

ادامه عمل اچ كردن با خورده شدن سطح دانه‌ها همراه است. سرعت خورده شدن سطح دانه به جهت استقرار صفحات بلورين آن بستگي دارد. سرعت واكنش شيميايي در همه جهات يكسان نيست، لذا سطح برخي از دانه‌ها سريعتر از سطح دانه هاي لذا سطح برخي از دانه‌ها سريعتر از دانه‌ها از سطح دانه هاي ديگر خورده مي‌شوند. آن دانه هايي كه طوري جهت گيري شده اند كه نور منعكس شده از انها به داخل ميكروسكوپ بر نمي گردد، تيره ديده مي‌شود.

ميكروسكوپ الكتروني
ميكروسكوپ الكتروني(SEM) امروزه اغلب در مراكز تحقيقاتي معتبر جهان مورد استفاده قرار مي‌گيرد.
زمينه هاي تحقيق بيشنر عبارتند از: زمين شناسي، متالوژي،تكنولوژي نيمه هاديها، كنترل كيفي بررسي ساختاري فلزات، شكست نگاري، خوردگي و اكسيداسيون، متالورژي پودري، لاستيكها و پلاستيكها، انجماد، شكل دادن فلزات و … .

بزرگنمايي ميكروسكوپ الكتروني بسيار بالاست و تا ۳۰۰۰۰۰ برابر مي‌رسد و قدرت تفكيك آن نيز بسيار عالي است و قادر است تا حدود A10 (انگستروم) را تشخيص دهد. امروزه همراه با ميكروسكوپ الكتروني، دستگاه آناليز اشعه X نيز وجو دارد كه مي‌تواند آناليز كمي تركيب را نيز در يك حجم كوچك ارائه دهد.

اصول كلي دستگاه ميكروسكوپ الكتروني بدين صورت است كه يك دسته پرتو الكتروني توسط ايجاد ولتاژ بسيار بالا( حدودKV50) از يك فيلمان حرارت ديده شتاب داده مي‌شوند اين الكترونها ا زميان عدسي هاي مغناطيسي عبود كرده و بصورت متمركز شده بر روي سطح نمونه (آلياژ) تأبيده مي‌شود و موجب مي‌شود كه الكترونهايي از سطح نمونه خارج گردند، اين الكترونها توسط يك كلكتور جمع آوري شده و توسط آمپلي فاير تقويت شده و بر روي صفحه تلويزيوني رؤيت مي‌گردد و اطلاعات دقيقي از سطح نمونه بدست مي‌دهد كه مي‌توان آنرا مورد تجزيه و تحليل قرار داد.
دستگاه پوليش(صيقل كاري)

پس از اينكه از آلياژ نمونه تهيه شد بايستي آنرا تراشكاري كرده و سپس سطح آنرا توسط سمباده هاي درشت و بعد با سمباده هاي بسيار نرم(به ترتيب) سمباده كاري و صيقل نمود.
صيقل كاري نهايي توسط دستگاه پوليش انجام مي‌گيرد. دستگاه مزبور بسيار ساده است و بطور كلي از طريق مكانيكي يك ديسك صفحه اي كه روي آن را پارچه پرزدار يا مخمل يا پوست خز و يا پارچه هاي ظريف چسبانده شده است،با سرعت مناسب به حركت‌ در مي‌آيد و حول محور اصلي مي‌چرخد .

در حين صيقل كاري نهايي از ساينده هايي نظير اكسيد آلومينيوم(كوراندم) كه به صورت پودرهاي بسيار ريز متعلق در آب مي‌باشند براي مواد آهني و مسي استفاده مي‌شود وبراي صيقل كاري آلياژهاي آلومينيوم و منيزيم غالباً از اكسيد منيزيم معلق در آب استفاده مي‌شود.
اين ذرات ساينده بر روي پارچه مخمل دستگاه پوليش ريخته مي‌شوند و نمونه را روي آنها نگه مي‌دارند تا سطح آن كاملاً صيقلي و آينه اي گردد.

 

عمليات آماده سازي و تهيه يك مقطع متالوگرافي
تحقيق بر روي ساختار فلزات بوسيله، يك ميكروسكوپ، تنها وقتي امكان پذير است كه پرتوهاي نوري تابيده شده به سطح فلز، با شدت نسبتاً زيادي از اين سطح منعكس گردد. به همين دليل، سطح نمونه بايستي تحت عمليات سطحي خاص، آماده گردد. نمونه اي كه سطح آن جهت بررسي ميكروسكوپي آماده شده است، «مقطع» ناميده مي‌شود. براي تهيه يك مقطع بايستي نمونه اي از فلز مورد مطالعه، بريده شده و سطحي صاف و صيقلي تهيه گردد.

مراحل آماده سازي يك مقطع جهت بررسي و مطالعه ميكروسكوپي به ترتيب زير مي‌باشد:

نمونه برداري Specimen Selection
انتخاب نمونه هاي متالوگرافي كه بايستي زير ميكروسكوپ آزمايش شوند، از اهميت زيادي برخوردار است. نمونه بايستي نماينده تمامي يك قطعه باشد، به هنگام بررسي يك عيب از طريق متالوگرافي بايستي نمونه از محل آن عيب تهيه شود تا اطلاعات كاملي كاملي بدست آيد.

همچنين در بعضي موارد، بخصوص در مورد قطعات نورد شده، بدليل ناهمسو بودن خواص در جهت نورد و در جهت عمود بر آن، لازمست تا نمونه برداري در هر دوجهت صورت گيرد. قطعات و نمونه هاي كوچك، پس از انجام عمليات سطحي مناسب بر روي آنها، مستقيماً جهت مطالعه، زير ميكروسكوپ قرار مي‌گيرند. در صورتيكه اندازه و وزن يك قطعه زياد باشد و يا اينكه قطعه داراي شكل پيچيده اي بود و فاقد يك قسمت مسطح باشد، در اينصورت، لازمست كه نمونه اي كوچك از قطعه بريده شده و تحت عمليات سطحي قرار گيرد

.
نمونه برداري ممكنست به روشهاي مختلفي انجام شود كه معمولترين آنها عبارتند از:
الف) نمونه برداري از طريق بريدن
ب) نمونه برداري از طريق شكستن
در موارد نرم، نمونه برداري را مي‌توان از طريق بريدن بوسيله اره و يا ساير ابزار برنده انجام داد. در موادي كه داراي استفاده از ديسكهاي كربوراندوم، الماس و غيره انجام مي‌شود. نكته قابل توجه آنست كه بايد در حين برش از گرم شدن حد قطعه اجتناب گردد، زيرا اين امر مي‌تواند به تغيير ساختار فلز منتهي گردد.
يكي ديگر از روشهاي بريدن، برش توسط جرقه الكتريكي (EDA) مي‌باشد كه براي نمونه برداري از قطعات سخت بكار مي‌رود.

در صورتيكه فلز ترد و شكننده باشد و نمونه اي با شكل و اندازه معيني مورد نياز نباشد، مي‌توان با استفاده از چكش، تكه كوچكي از قطعه را، از طريق شكستن قطعه، تهيه كرده، سپس با انجام عمليات بعدي آنرا براي بررسي با متالوگرافي آماده نمود.

همانگونه كه اشاره شد، از عوامل مهمي كه نتايج مطالعه به آنها بستگي دارد، انتخاب محل نمونه برداري و سطح مورد مطالعه مي‌باشد. اين انتخاب در حقيقت به موضوع مورد مطالعه و شكل يك قطعه بستگي دارد و به همين دليل، در اينجا تنها مي‌توان توصيه هاي عمومي را مطرح نمود.
در فلزات و آلياژهاي ريختگي، مطالعه ريزساختارها بايستي در مقاطع(ضخامتهاي) مختلف انجام شود، زيرا با تغيير مقاطع، سرعت سرد شدن نيز در هر مقطع تغيير پيدا مي‌كند و در نتيجه ساختارهاي متفاوتي حاپل مي‌گردد.

قالبگيري(سوار كردن) نمونه‌ها Mounting
نمونه هاي را كه داراي ابعاد بسيار كوچكي هستند و يا اينكه، شكل نامناسبي دارند، نمي توان به آساني در دست گرفته و عمليات آماده سازي را بر روي آنها انجام داد. به همين منظور، اين نمونه‌ها را با مواد پلاستيكي مصنوعي قالبگيري مي‌كنند. مواد پلاستيكي مصنوعي قالبگيري مي‌كنند. مواد قالبگيري از نقطه نظر انجماد، در دو نوع گرما سخت و سرما سخت، وجود دارند.
سمباده زني(سمباده كاري) نمونه‌ها Grinding

سمباده زني (سمباده كاري) يكي از مراحل مهم در آماده سازي نمونه‌ها مي‌باشد. زيرا ناهمواريهاي ناشي از مرحله نمونه برداري، بايستي در اين مرحله بر طرف گردد. لازم به ذكر است سوختگي ناشي از بريدن به سختي از بين مي‌رود. در حين عمل ناشي از بريدن سمباده كاري، خراشهايي بوجود مي‌آيد كه بايستي

در مراحل بعدي و با استفاده از مواد ساينده ريزتر كاهش داده شوند. نكته قابل توجه آنست كه در انتهاي مرحله سمباده كاري، تنها خراشهاي ناشي از آخرين مرحله سمباده كاري، تنها خراشهاي ناشي از آخرين مرحله سمباده كاري(سمباده كاري با ريزترين مواد ساينده) بايستي بر روي سطح وجود داشته باشد و خراشهاي ناشي از آخرين مرحله سمباده هاي داراي مواد درشت تر، در صورتي كه در طي مراحل سمباده كاري قبلي ازبين نرفته باشند، ديگر با عمليات بعدي(صيقلي‌كردن) از بين نخواهند رفت.

بطور كلي سطحي كه قرار است آماده شود، بوسيله ساينده هاي درجه بندي شده بر حسب اندازه ذرات مواد ساينده، به ترتيب از ذرات درشت به ذرات ريز، تحت سايش قرار مي‌گيرد. معمولاً عمل سايش از موادي با اندازه ۱۸۰-۶۰ مش آغاز شده و سپس تا ۶۰۰ مش و حتي بيشتر ادامه پيدا مي‌كند. عموماً سمباده هاي مورد استفاده از نظر اندازه ذرات مواد ساينمده به ترتيب زير مي‌باشد:
مش ۶۰۰ ۴۰۰ ۳۲۰ ۲۴۰ ۱۲۰
انتخاب اولين مواد ساينده به ميزان زبري سطح و عمق خراش و ناهمواري هاي ناشي از مرحله نمونه برداري بستگي دارد.

براي سطوحي كه با اره نواري بريده مي‌شوند اولين سمباده معمولاً بين ۱۲۰-۶۰ مش انتخاب مي‌شود. سطوحي كه عمل برش آنها به همراه سايش انجام مي‌گيرد هموارتر بوده و خراش كمتري دارند. در اين سطوح عمل سمباده كاري با سمباده هاي ۲۴۰-۱۲۰ مش آغاز مي‌شود. اگر سطوحي با استفاده از اره سيمي(Wire Saw) و يا اره الماسي با سرعت كم، بريده شده باشند،

در چنين حالتي اولين سمباده اي كه مي‌تواند براي نرحله سمباده كاري ناشي از حرارت و نيز افزايش عمر و دوام كاغذ سمباده بايستي عمليات سمباده كاري به روش‌تر(مرطوب) انجام گيرد. رطوبت از گير افتادن ذرات فلز در ميان ذرات مواد ساينده و در نتيجه كاهش راندمان سايش جلوگيري كرده، عمل بريدن را توسعه مي‌بخشد. همچنين در سمباده كاري مرطوب، نمونه خنك مي‌شود و بدين ترتيب حرارت حاصل از اصطكاك كه ممكن است باعث تغيير ساختار ميكروسكوپي حقيقي شود، كاهش پيدا مي‌كند.

آب معمولي ترين خنك كننده و روان ساز، براي تمام مواد، به استثناي موادي كه با آب واكنش مي‌دهند، مي‌باشد.
جهت سمباده زدن، نسبت به نمونه نبايستي در طول عمليات سمباده كاري ثابت نگه داشته شود. براي دستيابي به بهترين نتايج، اين جهت بايستي در بين مراحل كار ۴۵تا۹۰ درجه تغيير نمايد.
در موارديكه ازسمبادده كاري دستي استفاده مي‌شود آزمايش كننده، بايستي سطح را بدقت بازرسي كند تا مطمئن گردد خراشهاي مربوط به مرحله قبلي، كاملاً از بين رفته باشند.
پرداخت كاري(صيقل كاري) نمونه‌ها Polishing

پس از انجام عمليات سمباده كاري تا ۶۰۰مش، نمونه، براي ايجاد يك سطح تخت و تا حد قابل قبولي عاري از خراش و با قابليت انعكاس بالا، صيقلي مي‌گردد.

هر چند در كارهاي جاري و معمول همواره لازم نيست كه سطح كاملاً بدون خراش باشد، با وجود اين، تمام خراشهاي موجود بايستي بسيار ريز و در عين حال خوب پخش شده باشند تا ساختار واقعي را بتوان مشاهده نمود.
عمليات پرداخت كاري دو نوع مي‌باشد، يكي تحت عنوان صيقل كاري درشت و ديگري نيز به صيقل كاري نهايي موسوم است.

صيقل كاري درشت
اين نوع صيقل كاري توسط مواد ساينده خميري الماس در اندازه هاي ۱۰-۴ ميكرون به بهترين وجهي صورت مي‌گيرد، براي صيقلي كردن درشت بايستي پارچه ابريشم مصنوعي نظير نايلون، به عنوان پوشش براي صفحه صيقلي كننده دوار بكار برود.

در خلال صيقل كاري درشت، نمونه را در جهت عقربه هاي ساعت خول چرخ صيقل كاري حركت مي‌دهند تا از تمام سطح آن، بطور مساوي بار برداشته شود وصيقل كاري در يك جهت مشخص نشود. به غير از الماس، مواد ساينده ديگري نيز ممكن است بكار رود، ولي به منظور دستيابي به يك سرعت براده برداري مساوي، اندازه دانه اي بسيار بزرگتري لازم است و به علاوه درجه صيقل كاري نيز نامرغوب تر است.

صيقل كاري نهايي
صيقلي كردن يا صيقل كردن نهايي با وسايل مكانيكي، مشابه همان روشي انجام مي‌گيرد كه براي صيقل كاري درشت بكار مي‌رود. اكسيد آلومينيوم، معروفترين ماده ساينده براي صيقل كاري نهايي مواد آهني و مسي است. اكسيد منيزيم غالباً براي صيقل كاري آلياژهاي آلومينيوم و منيزيم بكار مي‌رود. مواد ساينده صيقلي كننده از قبيل خمير الماس و اكسيد كروم، معمولاً كمتر بكار مي‌روند.

حك كردن(ظاهر سازي ساختمان- اچ كردن)Etching
نمونه هاي فلزي صيقلي شده، معمولاً هيچگونه مشخصات ساختاري را نشان نمي دهند. هدف از اچ كردن سطح فلز، مرئي ساختن ساختار بلورين فلز و تشخيص سازنده هاي مختلف مي‌باشد. براي اچ كردن، نمونه تميز و صيقلي شده را در محلول اچ كننده(معرف) مناسب(مطابق جدول ۴) فرو مي‌برند.

محلول هاي اچ كننده، از حل كردن اسيدهاي آلي و غير آلي، قليايي‌ها يا ساير مواد كمپلكس، در حلال هايي ا زقبيل آب، گليسيرين، يا گليكول تشكيل مي‌شوند. اين مواد اثري بسيار قوي دارند و بايستي با احتياط بكار برده شوند. چون هر محلول براي هدف خاصي ساخته شده، لذا هنگام ظاهر كردن ساختاري كه مورد نظر است، در انتخاب محلول بايستي نهايت دقت را بكار برد. مثلاً پيكرال يك اچ كننده عمومي نيست بلكه براي تشخيص فريت و كربور آهن بكار مي‌رود.

با اين معرف، كربور آهن بيشتر ديده مي‌شود در صورتيكه نيتال جهت مصرف فوق مناسب نبوده بلكه اصولاً به عنوان يك ظاهر كننده عمومي در فولاد و جهت ظاهر شدن مرز دانه هاي فريت بكار مي‌رود.
جدول ۴- معرفهاي اچ كننده(ظاهر كننده) انتخابي براي آزمايش ميكروسكوپي فلزات.
فلزها اچ كننده(ظاهر كننده) تركيب ملاحظات
آهن و فولاد شماره۱، نيتال ۱%تا۵% اسيد نيتريك ۹۵%تا۹۹% متيل الكل فولادهاي كربني- پرليت را تيره مي‌كند، مرزهاي دانه اي را ظاهر مي‌كند مصرف عمومي براي فولادهاي تندبر زمان:۵تا۶۰ثانيه
شماره۲، پيكرال ۴ گرم اسيد پيكريك ۱۰۰ميلي گرم متيل الكل كربن و فولادهاي كم آلياژ عمل آورده شده

الكل حرارتي يا عمل آورده نشده زمان:۵تا۱۲۰ثانيه
شماره۳ كلريد آهن(كلروفريك) و اسيد هيدروكلريك ۵گرم ۵۰ميلي گرم اسيد هيدروكلريك ۱۰۰ميلي ليتر آب ساختمان فولادهاي ضدرنگ و نيكل دار استيني را ظاهر مي‌كند
شماره۴، عمل آوردن حرارتي گرم كردن *
نمونه روي بشقاب گرم رو به بالا،۴۰۰ تا ۷۰۰ درجه فارنهايت پرليت تفيير رنگ مي‌دهد و سمنتيت كمتر تغيير مي‌كند بويژه براي چدن بسيار مفيد است. زمان:۱۰تا۶۰دقيقه
مس و آلياژهاي آن شماره۵، هيدروكسيد آمونيوم- پيروكسيد هيدروژن ۵قسمت NH وOH (وزن مخصوص ۸۸/۰) ۵ قسمت آب، ۵-۲ قسمت(۳%)

ظاهر كننده عمومي براي مس و آلياژهاي آن زمان:۱دقيقه
شماره ۶، اسيدكروميك محلول رقيق اشباع شده( )
مس، برنج، برنز و نقره نيكلي
شماره ۷ كلروفريك ۵گرم كلرور فريك، ۹۶ميلي ليتر الكل اتيليك، ۲ ميلي ليتر اسيد كلريدريك مس، آلومينيوم، منيزيم، نيكل و آلياژهاي روي زمان: ۱ثانيه تا چند دقيقه
آلومينيوم و آلياژهاي آن شماره۸ اسيد فلئوريدريك ۵/۰ميلي ليتر كلرو فريك۵/۹۹ ميلي آب ظاهر كننده عمومي با جاروب كردن بكار ببريد زمان:۱۵ ثانيه
شماره ۹ هيدروكسيد سديم ۱۵ گرم سود ۹۰ميلي ليتر آب ظاهر كننده عمومي، مي‌تواند براي هر دو ظاهر ساختن درشت وريز بكار رود زمان:۵ ثانيه
منيزيم و آلياژهاي آن شماره۱۰ گليكول ۷۵ميلي ليتر گليكول اتيلن، ۲۴ ميلي ليتر آب، ۱ميلي ليتر اسيد نيتريك غليظ تقريباً براي همه آلياژهاي منيزيم زمان: ۳ تا ۶۰ثانيه
نيكل و آلياژهاي آن شماره ۱۱، ۵۰ميلي ليتر اسيد نيتريك غليظ، ۵۰ ميلي ليتر اسيد گلاسيال غليظ نيكل،مونل و ساير آلياژهاي نيكل و مس زمان:۵تا۲۰ثانيه
شماره۱۲ ۵۰ ميلي ليتر اسيد نيتريك
تيزاب سلطاني اسيد نيتريك غليظ، ۲۵ ميلي ليتر اسيد كلريد ريك غليظ ۲۰ ميلي ليتر اينكول
آب
آلياژهاي قلع وسرب و روي مراجعه شود به كتابهاي مربوط

معمولاً براي اچ كردن نمونه، آن را با انبري نگه داشته و از طرف سطح سيقلي شده درون ظرف كوچكي كه قسمتي از ان محلول مورد نظر پر شده، غوطه ور مي‌كنند. از طرفي مي‌‌توان بوسيله پارچه كتاني كه از محلول اچ اشباع شده است، نمونه را اچ كرد. پيشرفت اچ شدن را مي‌توان با چشم ديد ولي بايستي زمان نيز كافي باشد.

زمان اچ كردن مناسب را بايستي بطور تجربي يافت و ممكنست از چند ثانيه تا يك دقيقه با بيشتر متغير باشد.
هرگاه نمونه اي به اندازه كافي اچ نشده باشد، بعد از تخستين غوطه وري، اين فرآيند ممكن است تكرار شود. هر گاه نمونه زياد اچ شده باشد، بايستي آنرا صيقلي نموده مجدداً اچ نمود. بلافاصله بعد از اچ كردن نمونه را بايستي با آب گرم شست تا عمل اچ شدن متوقف شود، سپس در الكل فرو برده و سرانجام در معرض وزش هواي گرم، خشك كرد. بنابراين به منظور جلوگيري از لكه آب، خشك كردن سريع، مهم است.

يكي از هدفهاي اچ كردن شيميايي، بر طرف ساختن فلز تغيير شكل يافته اي است كه ممكن است در خلال صيقلي كردن، توسعه يافته باشد.
بطور كلي اجزا ساختاري، در اثر اچ شدن ترجيحي ظاهر مي‌گردند، بدين معنا كه بعضي از سطوح، مانند مرز دانه ها، خيلي بيشتر از سطوح ديگر داراي تنش بوده و در نتيجه در معرض خورده شدن بيشترتوسط ماده اچ كننده قرار مي‌گيرند.

سرعت، اچ شدن نيز براي صفحات كريستالوگرافي مختلف، فرق مي‌كند و درجات متغيري از نور منعكس شده با سايه حاصل از دانه‌هاي مختلف، ايجاد مي‌كند.

متالوگرافي چدنها
چدن يكي از مهمترين مواد صنعتي ميباشد. اجزا ماشين آلات، سيلندرها، چرخ دنده‌ها، رينگ پيستونها و بسياري از قطعات ديگر، از چدن ساخته مي‌شوند. خواصي كه باعث شده است نا چدن، چنين فلز باارزشي در صنعت باشد عبارتند از:
قابليت ريخته گري بسيار خوب، خواص مكانيكي نسبتاً خوب، قابليت ماشين كاري عالي و نداشتن حساسيت به كيفيت پرداخت سطحي.

براساس نمودار تعادلي آهن-كربن، به آلياژ آهن و كربن دانست كه كربن موجود در آن بيش از قابليت آستنيت در درجه حرارت اوتكتيك است. در چدن علاوه بر كربن، سيليسيم، نيز به عنوان عنصر سوم و به اندازه(۳-۵/۰) درصد موجود ميباشد. ساختار ميكروسكوپي چدن به دو عامل اصلي، يعني تركيب شيميايي(كربن و سيليسيم) و سرعت سرد شدن آن بستگي دارد.

در صورتيكه تركيب شيميايي چدن در محدوده معيني قرار داشته باشد و مذاب با سرعت آهسته اي سرد گردد، كربن در جريان انجماد به شكل آزاد(گرافيت) رسوب مي‌كند. چنين چدنهايي را كه مقطع شكست آنها، تيره و خاكستري ديده مي‌شود، چدن خاكستري مي‌نامند.

اما اگر تركيب شيميايي چدن از نظر ميزان كربن و سيليسيم، كمتر از مقدار اين عنصر د رچدن خاكستري باشد و يا اينكه صرعت سدن شدن مئذاب چدن به اندازه كافي سريع باشد، آنگاه قسمت اعظم كربن آن به صورت تركيب (سمانتيت) رسوب مي‌كند. اين چدنها كه مقطع شكست آنها، سفيد و روشن ديده مي‌شود، چدن سفيد ناميده مي‌شوند.