معادلات دیفرانسیل ومهندسی صنایع

معادله دیفرانسیل
معادله ديفرانسيل معادله‌اي است كه شامل متغير و مشتق آن متغير باشد.
بسياري از قوانين عمومي طبيعت (در فيزيك، شيمي، زيست‌شناسي و ستاره‌شناسي) طبيعي‌ترين بيان رياضي خود را در زبان معادلات ديفرانسيل مي‌‌يابند.
كاربردهاي معادلات ديفرانسيل همچنين در رياضيات، بويژه در هندسه و نيز در مهندسي و اقتصاد و بسياري از زمينه‌هاي ديگر علوم فراوان‌اند.

معادله دیفرانسیل معادله‌ای است که شامل متغیر و مشتق آن متغیر باشد. بسیاری از قوانین عمومی طبیعت (در فیزیک، شیمی، زیست‌شناسی و ستاره‌شناسی) طبیعی‌ترین بیان ریاضی خود را در زبان معادلات دیفرانسیل می‌‌یابند. کاربردهای معادلات دیفرانسیل همچنین در ریاضیات، بویژه در هندسه و نیز در مهندسی و اقتصاد و بسیاری از زمینه‌های دیگر علوم فراوان‌اند.

مجسم سازی جریان هوا به داخل لوله که با معادلات ناویر-استوکس ، مدل سازی شده است، مجموعه ای از معادلات دیفرانسیل جزئی
معادلات دیفرانسیل مشهور
• قانون دوم نیوتن در دینامیک (مکانیک)

• معادلات همیلتون در مکانیک کلاسیک
• معادلات ماکسول در الکترومغناطیس
• معادلات پواسن
• مسئله منحنی کوتاه‌ترین زمان.
• فرمول انیشتین.
• قانون گرانش نیوتن.

• معادله موج برای تار مرتعش.
• نوسانگر همساز در مکانیک کوانتومی.
• نظریه پتانسیل.
• معادله موج برای غشای مرتعش.

• معادلات شکار و شکارچی.
• مکانیک غیر خطی.
• مسئلهٔ مکانیکی آبل.
معادله دیفرانسیل معادله‌ای است که شامل یک یا چند مشتق یا دیفرانسیل باشد. معادلات دیفرانسیل بر اساس ویژگیهای زیر رده بندی می‌شوند:
نوع (عادی یا جزئی)
• معادله شامل متغیر مستقل x ، تابع (y = f(x و مشتقات f را یک معادله دیفرانسیل عادی می‌نامیم.
• معادله ای متشکل از یک تابع مجهول با بیش از یک متغیر مستقل همراه با مشتقات جزئی آن معادله دیفرانسیل جزئی می نامیم.

مرتبه
که عباترت است از مرتبه مشتقی که بالاترین مرتبه را در معادله دارد.
درجه
نمای بالاترین توان مشتقی که بالاترین مرتبه را در معادله دارد، پس از حذف مخرج کسرها و رادیکالهای مربوط به متغیر وابسته و مشتقاتش. معمولا یک معادله دیفرانسیل مرتبه n جوابی شامل n ثابت دلخواه دارد، این جواب را جواب عمومی می‌نامند.
ساختار

معادلات دیفرانسیل ساختارهای متفاوتی هستند و هر ساختار ویژگیهای متفاوتی دارد:
• معادلات مرتبه اول از درجه اول
o با متغیرهای جدایی پذیر
o همگن
o خطی (برنولی)

o با دیفرانسیلهای کامل
• معادلات مرتبه دوم
• معادلات خطی با ضرایب ثابت: الف) همگن ب) ناهمگن.
• تکنیکهای تقریب زدن: الف) سریهای توانی ب) روشهای عددی.
صور مختلف معادلات دیفرانسیل
معادله دیفرانسیل مرتبه اول از درجه اول را همواره می‌توان به صورت زیر در آورد که در آن M و N معرف توابعی از x و y هستند.
Mdx + Ndy = 0

در معادله فوق هرگاه M فقط تابعی از x و N فقط تابعی از y باشد. به صورت معادله جدایی پذیر مرتبه اول است. در این صورت با انتگرال گیری از هر جمله جواب بدست می‌آید. یعنی:
M(x) dx+ ∫N(y) dy = C∫
معادله دیفرانسیل همگن
گاه معادله دیفرانسیلی را که متغیرهایش جدایی پذیر نیستند با تعویض متغیر می‌توان به معادله‌ای تبدیل کرد که متغیرهایش جدایی پذیر باشند، چنین معادله‌ای را همگن می‌نامند. معادله دیفرانسیل خطی مرتبه اول را همیشه می‌توان به صورت متعارف زیر در آورد که در آن P و Q توابعی از x هستند.
dy/dx + py = Q

 

معادله را که بتوان آن را به صورت:
M (x,y) dx + N(x,y) dy = 0

نوشت و دارای ویژگی زیر باشد کامل نامیده می‌شود. زیرا طرف چپ آن یک دیفرانسیل کامل است.
M/∂y = ∂N/∂x∂
معادلات دیفرانسیل مرتبه دوم
یک معادله دیفرانسیل مرتبه دوم در حالت کلی به صورت زیر است:
F (x,y,dy/dx,d2y/dx2) = 0

 

این گونه معادلات را معمولا با یک متغیر مناسب مثل dy/dx = p به معادلات دیفرانسیل نوع اول تبدیل کرد و با جاگذاری در معادله مربوط به روش معادلات دیفرانسیل مرتبه اول حل کرد.
معادلات دیفرانسیل خطی
معادله دیفرانسیل

را که در آن توابع ، ، … ، و بر بازه I پیوسته بوده و (an(x هرگز صفر نباشد یک معادله دیفرانسیل خطی مرتبه n ام می‌نامیم. که البته اگر در تعریف فوق (F(x مساوی صفر باشد، معادله دیفرانسیل D برای مشتق توابع معرفی می‌شود، سپس با نوشتن معادله کمکی p(r) = 0 و پیدا کردن صفرهای معادله (p(r جواب معادله همگن را پیدا می‌کنیم. در صورت ناهمگن بودن علاوه بر عملیات فوق ، جوابهای معادله ناهمگن را با شیوه های خاصی را پیدا کرده به جواب بالا اضافه می‌کنیم.

حل معادلات دیفرانسیلی خطی مرتبه n ام به توسط سریهای توانی
معادله دیفرانسیل

را در نظر می‌گیریم که در آن x0 نقطه منفرد معادلات در این صورت با تغییر متغیر زیر به حل معادله می‌پردازیم:
، و …
همین طور با جاگذاری سری مربوط به (F(x و تجریه مناسب و مساوی قرار دادن دو طرف عبارت به حل معادله می‌پردازیم.
کاربردها
کاربردهای معادلات دیفرانسیل توصیف کننده حرکت سیارات ، که از قانون دوم نیوتن بدست می‌آیند، هم شامل شتاب و هم شامل سرعت می‌شوند.
• در مورد حرکت موشکها در نزدیکی سطح زمین و در فضا ، معادلات دیفرانسیل پیچیده ترند.
• مسائل فیزیکی زیادی بعد از فرمول بندی آنها به زبان ریاضی به معادلات دیفرانسیل منجر می‌شوند.
• در رشته سینتیک شیمیایی ، معادلات دیفرانسیل نقش منحصر به فردی به عهده دارند.
• همینطور در مواردی چون سود مرکب ، واپاشی رادیواکتیو – قانون سرمایش نیوتن و رشد جمعیت کاربرد فراوانی دارد.
کاربرد ریاضیات،دیفرانسیل در شاخه مهندسی

کاربردهای ریاضیات،بی اندازه زیاد و بسیار گوناگون است.در واقع به کار بردن روشهای ریاضی مرزی نمیشناسد: همه شکلهای مختلف ، حرکت ماده را میتوان با روش ریاضی بررسی کرد.البته،نقش و اهمیت روش ریاضی در حالتهای مختلف متفاوت است.هیچ طرح معین ریاضی نمیتوانداز عهده بیان همه ویژگیهای پدیده های حقیقی برآید.وقتی میخواهیم پدیدهای را بررسی کنیم،شکل خاصی از آن را در معرض تحلیل منطقی قرار میدهیم ، در ضمن تلاش میکنیم نکته هایی را بیابیم که در این شکل جدا شده از پدیده واقعی وجود نداردو شکلهای تازهای پیدا کنیم که بیشتر و کاملتر، در برگیرنده پدیده ما باشد.

ولی اگر در هر گام تازه، نیاز به بررسی کیفی جهتهای تازهای از پدیده باشد.روش ریاضی،خود را عقب میکشد.در این جا تحلیل منطقی همه ویژگیهای پدیده، تنها میتواند طرح ریزی ریاضی را مبهم کند.ولی اگر شکلهای ساده و پایدار یک پدیده یا یک روند بتواند تمامی پدیده یا روند را با دقت و به طور کامل بپوشاند،اما در مرزهای این شکل مشخص ،به جنبه های پیچیده و دشواری برخورد کنیم، نیاز به بررسی ریاضی و بویؤه استفاده از نمادها و جستو جوی الگوریتم خاص برای حل آنها پیدا شود. این جاست که در قلمرو فرمانروایی روشهای ریاضی قرار میگیریم.

همان طور که از بررسی تاریخ بر می آید. آغاز حساب و هندسه مقدماتی، به طور کامل زیر تاثیر خواستهای مستقیم زندگی و عمل بود. اندیشه ها وروشهای تازه بعدی ریاضی هم، با توجه به خواستهای عملی دانشهای طبیعی (اختر شناسی، مکانیک، فیزیک و غیره)، که پیوسته در حال پیشرفت بود، شکل می گرفت. بستگی مستقیم ریاضیات یا صنعت، اغلب به صورت به کار گرفتن نظریه های موجود ریاضی در مساله های صنعتی، جلوه می کند.
نمونه ها

حال، از نمونه هایی یاد می کنیم. که بر اثر خواست مستقیم صنعت نظریه های کلی ریاضی به وجود آمده است. روش کمترین مربعات به دلیل نیازهای نقشه برداری پدید آمد بسیاری از حالتهای تازه معادله های دیفرانسیلی، برای نخستین بار برای حل مساله های مربوط به صنعت، طرح و بررسی شد. روشهای اپراتوری حل معادله های دیفرانسیلی، در رابطه با الکترونیک تکامل یافت و غیره.

به خاطر نیازهای ارتباطی، شاخه تازه ای به نام انفورماسیون در نظریه احتمال به وجود آمد. مساله های مربوط به ترکیب دستگاههای مدیریت، منجر به پیشرفت دیفرانسیل به جز نیازهای اخترشناسی، مساله های مربوط به صنعت هم نقش اساسی داشته است: بسیاری از این روشها، به طور کامل با تکیه بر زمینه های صنعتی و مهندسی پدید آمدند. با پیچیده تر شدن صنعت و دشواریهای ناشی از آن مساله به دست آوردن سریع جوابهای عددی، اهمیت زیادی پیدا می کند. با امکانهایی که در نتیجه کشف ماشینهای محاسبه برای حل عملی مساله ها به وجود آمد، روشهای محاسبه ای باز هم اهمیت بیشتری پیدا کرد. ریاضیات محاسبه ای، برای حل بسیاری از مساله های عملی و از جمله مساله های مربوط به انرژی اتمی و بررسیهای فضایی، نقشی جدی به عهده دارد