فصل یکم
مقدمه ای بر نانوتکنولوژی
۱-۱) مقدمه
سال ۱۹۵۹ سالی تاریخی برای علم و تکنولوژی است. در این سال فناوری مهندسی مولکولی (نانوتکنولوژی) اولین بار توسط ریچارد فاینمن ، برنده جایزه نوبل فیزیک که ملقب به پدر علم نانوتکنولوژی است مطرح شد. وی بیان کرد فضای زیادی در پایین وجود دارد . همین جمله پایه علم نانوتکنولوژی شد. در حقیقت او این نکته را مطرح ساخت که اصول علم فیزیک چیزی جز امکان ساختن اتم به اتم اشیاء بیان نمی کنند. او پیشنهاد کرد که می توان اتم های مجزا را دستکاری کرد و مواد و ساختارهای کوچکی را تولید نمود که خواص متفاوتی دارند.

در دهه ۵۰ و ۶۰ میلادی فعالیت های زیادی روی ذرات فلزی کوچک در حال انجام بود. در آن زمان این فعالیت ها را نانوتکنولوژی نمی نامیدند. تولید سیلیکون متخلخل در سال ۱۹۶۵ و یا کار روی تولید ذرات نانومتری فلزات قلیایی به وسیله تبخیر فلز سدیم ، پتاسیم و چگالش سریع آن ها، از جمله این فعالیت ها بود. سیال های مغناطیسی نیز در دهه ۶۰ توسعه یافتند. این مواد شامل نانوذرات مغناطیسی هستند که در یک مایع توزیع شده اند.

 

۱-۲) نانوتکنولوژی چیست؟
پیشوند نانو در اصل یک کلمه یونانی است. معادل لاتین این کلمه، Dwarf است که به معنی کوتوله و قد کوتاه است. این پیشوند در علم مقیاس ها به معنی یک میلیاردم است.
بنابراین این یک نانومتر، یک میلیاردم متر است. این مقیاس را با ذکر مثال هایی عینی، بهتر می توان حس کرد. یک تار موی انسان بطور متوسط قطری حدود ۵۰۰۰۰ نانومتر دارد. کوچکترین اشیای قابل دید توسط چشم غیرمسلح اندازه ای حدود ۱۰۰۰۰ نانومتر دارند.

به بیان ساده تر علم نانو مطالعه اصول اولیه مولکول ها و ساختارهای با ابعاد بین ۱ تا ۱۰۰ نانومتر است. این ساختارها را نانوساختار می نامیم. نانوتکنولوژی، کاربرد این ساختارها در دستگاه¬های با اندازه نانومتری است.

تعریف دیگری که می توان از نانوتکنولوژی ارائه نمود این است که نانوتکنولوژی شکل جدیدی از ساخت مواد بوسیله کنترل و دستکاری واحدهای ساختمانی آن ها در مقیاس نانو است. می توان گفت نانوتکنولوژی تولید کارآمد مواد و دستگاه¬ها و سیستم ها با کنترل ماده در مقیاس طولی نانومتر و بهره برداری از خواص و پدیده های نوظهوری است که در مقیاس نانو توسعه یافته اند.

یکی از ویژگی های مهم نانوتکنولوژی، جنبه چندرشته ای بودن آن است. مفهوم چند رشته ای در نانوتکنولوژی بدان معناست که نیروی کاری نانوتکنولوژی باید دارای بینش وسیعی از مفاهیم زیست شناسی، فیزیک، شیمی، اصول مهندسی طراحی، کنترل فرآیند و محصولات باشد. برای درک مفاهیم پایه ای و تدوین قوانین در مقیاس نانو تقریباً به تمامی علوم نیاز است. اصل چند رشته ای بودن نانوتکنولوژی بیانگر این حقیقت است که این علم رشته جدیدی نیست بلکه رویکردی جدیدی در تمام رشته هاست و تمام عرصه های مختلف علم و فناوری را در برمی گیرد. آنچه باعث ظهورنانوتکنولوژی شده، نسبت سطح به حجم بالای نانو مواد است. این موضوع یکی از مهمترین خصوصیات مواد تولید شده در مقیاس نانو است. در مقیاس نانو، اشیاء شروع به تغییر رفتاری می کنند و رفتار سطوح بر رفتار توده ای ماده غلبه می کند.

در این مقیاس برخی روابط فیزیکی که برای مواد معمولی کاربرد دارند، نقض می شوند. در حقیقت در این مقیاس، قوانین فیزیک کوانتوم وارد صحنه می شوند و امکان کنترل خواص ذاتی ماده از جمله دمای ذوب، خواص مغناطیسی، ظرفیت بار و حتی رنگ مواد، بدون تغییر در ترکیب شیمیایی ماده وجود خواهد داشت.

۱-۳) عناصر پایه در فناوری نانو
تفاوت اصلی فناوری نانو با فناوری های دیگر در مقیاس مواد و ساختارهایی است که در این فناوری مورد استفاده قرار می گیرند. البته تنها کوچک بودن اندازه مدنظر نیست، بلکه زمانی که اندازه مواد در این مقیاس قرار می گیرد، خصوصیات ذاتی آنها از جمله رنگ، استحکام، مقاومت به خوردگی و … تغییر می یابد.
در حقیقت اگر بخواهیم تفاوت این فناوری را با فناوری های دیگر به صورت قابل ارزیابی بیان نماییم، می توانیم وجود عناصر پایه را به عنوان یک معیار ذکر کنیم. عناصر پایه در حقیقت همان عناصر نانومقیاسی هستند که خواص آنها در حالت نانومقیاس با خواص شان در مقیاس بزرگتر فرق می کند.

اولین و مهمترین عنصر پایه، نانو ذره است. منظور از نانوذره، همانگونه که از نام آن مشخص است، ذراتی با ابعاد نانومتری در هر سه بعد می باشد. نانوذرات می توانند از مواد مختلفی تشکیل شوند، مانند نانوذرات فلزی، سرامیکی و … .
دومین عنصر پایه، نانوکپسول است. همان طور که از اسم آن مشخص است، کپسول هایی هستند که قطر نانومتری دارند و می توان مواد مورد نظر را درون آنها قرار داد و کپسوله کرد.

عنصر پایۀ بعدی نانو لوله کربنی است. این عنصر پایه در سال ۱۹۹۱ در شرکت NEC کشف شد و در حقیقت لوله هایی از گرافیت می باشند. اگر صفحات گرافیت را پیچیده و به شکل لوله در بیاوریم، به نانو لوله های کربنی می رسیم. این نانو لوله ها دارای اشکال و اندازه های مختلفی هستند و می توانند تک دیواره یا چند دیواره باشند. این لوله ها خواص بسیاری جالبی دارند که منجر به ایحاد کاربردهای جالب توجهی از آنها می شود.

عناصر پایه گوناگون و متنوع دیگری نیز وجود دارند، مانند مواد نانو بلوری توده ای، مواد نانوحفره ای، نانوالیاف ها، نانو سیم ها، فولرین ها و … . در قسمت های بعدی، با توجه به کاربردی که این عناصر پایه در ساخت نانوکامپوزیت ها دارند، به توضیح برخی از آنها خواهیم پرداخت.

 

۱-۳-۱) روش های ساخت عناصر پایه
به طور کلی عناصر پایه با دو رویکرد «بالا به پایین» و «پایین به بالا» قابل ساخت می باشند. در رویکرد بالا به پایین برای تولید محصول، یک ماده توده ای را، شکل دهی و اصلاح می کنند. در حقیقت دراین روش، یک ماده بزرگ را بر می داریم و با کاهش ابعاد و شکل دهی آن، به یک محصول با ابعاد نانو می رسیم. به عبارت دیگر، اگر اندازه یک ماده توده ای را به طور متناوب کاهش دهیم تا به یک ماده با ابعاد نانومتری برسیم، از رویکرد بالا به پایین استفاده کرده ایم. این کار اغلب و نه همیشه، شامل حذف بعضی از مواد به شکل ضایعات است. مثل ماشین کاری یک بخش فلزی از یک موتور یا نانو ساختاری کردن فلزات به طریق تغییر شکل دهی که شامل ضایعات نیست. از دیگر روشهای ساخت این نوع از مواد، می توان به لیتوگرافی، فرآوری مکانیکی، فرآوری حرارتی و ریسندگی اشاره کرد.

رویکرد پایین به بالا درست عکس رویکرد بالا به پایین می باشد. دراین رویکرد محصول از کنار هم قرار دادن مواد ساده تر بوجود می آید، مانند ساخت یک موتور از قطعات آن، در حقیقت کاری که در اینجا انجام میشود، کنار هم قراردادن اتم ها و مولکولها (که ابعاد کوچکتر از مقیاس نانو دارند) برای ساخت یک محصول نانومتری است. تصور کنید قادریم اتم ها و مولکول ها را به طور واقعی ببینیم و آنها را به طور دلخواه کنار هم قرار دهیم تا شکل مورد نظر حاصل شود. معمولاً روش های پایین به بالا ضایعاتی ندارند.

رسوبی دهی فاز گاز، رسوب دهی از فاز مایع، الگو برداری از نانو ساختارها، قوس الکتریکی، خودآرایی در محلول و …، برخی از روشهای ساخت مواد با رویکرد پایین به بالا هستند.

۱-۴) نانوذرات
نانو ذرات رایج ترین عناصر در علم و فناوری نانو بوده و خواص جالب توجه آنها باعث گردیده است کاربردهای بسیار متنوعی در صنایع شمیایی، پزشکی و دارویی، الکترونیک و کشاورزی داشته باشند.

طبق تعریف یک نانو ذره به ذره ای گفته ای می شود که ابعادی بین ۱ تا ۱۰۰ نانو متر داشته باشد. نانوذرات از طیف وسیعی از مواد ساخته می شوند. متداولترین و پرکارترین آنها، نانوذرات سرامیکی هستند. با توجه به تعریف نانوذرات ممکن است این ذهنیت بوجود آید که این ذرات با چنین ابعادی در هوا معلق خواهد ماند. اما در واقع چنین نیست و نیروهای الکترواستاتیکی بین این ذرات، آنها را در کنار هم قرار می دهد.

نانوذرات در اندازه های پایین نانو خوشه به حساب می آیند. همچنین نانوکره ها، نانو میله ها، و نانو فنجان ها تنها اشکالی از نانوذرات در نظر گرفته می شوند. نانو بلورها و نقاط کوانتومی نیمه هادی زیر مجموعه نانوذرات هستند.

چنین نانوذراتی در زمینه های مختلف الکترونیکی و الکتریکی و بیودارویی به عنوان حامل دارو و عوامل تصویر برداری کاربرد دارند.
تعیین مشخصات نانوذرات برای کنترل سنتز، خواص و کاربرد آنها ضروری است. مشخصات این ترکیبات با استفاده از روش های گوناگون نظیر آنالیز میکروسکوپ الکترونی، AFM طیف سنجی فوتوالکترونی، x-ray و FT-IR سنجیده می شود.

 

نانوذرات زمینه های کاربردی زیادی دارند که مهم ترین آنها عبارتند از:
۱- مواد کامپوزیت ۷- باتری ها و پیل های سوختی
۲- کامپوزیت های ساختاری ۸- روان کننده ها
۳- کاتالیزور ۹- پزشکی و داروسازی
۴- بسته بندی ۱۰- محافظت کننده ها
۵- روکش ها ۱۱- آنالیززیستی و تشخیص پزشکی
۶- افزودنی های سوخت و مواد منفجره ۱۲- ساینده ها

 

۱-۴-۱) خواص نانوذرات
با توجه به تعریفی که از نانو ذرات ارائه کردیم، یکی از سؤال های مهم در تولید مواد نانو این است که آرایش هندسی و پایداری اتم ها با تغییر اندازه ذرات چه تغییری می کند؟

اولین اثر کاهش اندازه ذرات، افزایش سطح است. افزایش نسبت سطح به حجم نانوذرات باعث می شود که اتم های واقع در سطح، اثر بسیاری بیشتری نسبت به اتم های درون حجم ذرات، بر خواص فیزیکی ذرات داشته باشند. این ویژگی، واکنش پذیری نانوذرات را به شدت افزایش می دهد که با استفاده از آن می توان کارآیی کاتالیزورهای شیمیایی را به نحو موثری بهبود بخشید و یا در تولید کامپوزیت ها با استفاده از این ذرات پیوندهای شمیایی مستحکم تری بین ماده زمینه و ذرات برقرار شده و استحکام کامپیوزیت به شدت افزایش می یابد. همچنین این ویژگی در خواص ترمودینامیکی ماده (مثل نقطه ذوب) نیز تاثیر گذار است.

تغییر در فاصله بین اتم های ذرات و هندسه ذرات روی خواص الکترونیکی ماده هم تاثیرگذاراست که پی بردن به چگونگی این تغییرات و میزان آنها کاری مشکل است. اما پیچیده ترین تاثیر اندازه ذرات، تاثیر برخواص مغناطیسی ماده است، ممکن است این تصور بوجود آید که وقتی به اندازه های کوچکتر می رویم، به عنوان مثال در مورد نانوذرات، حوزه های مغناطیسی مشخصی دیده نمی شود. بنابراین تصورمی شود که در این مواد سیستم های ساده تری وجود خواهند داشت. اما در حقیقت چیزی برعکس این موضوع وجود دارد.

ذرات مغناطیسی کوچک و حتی جامدات غیرمغناطیسی با اندازه دانه کوچک، نوع جدیدی از خواص مغناطیسی را نشان می دهند. این خواص متأثر از خاصیت کوانتومی اندازه ذرات است. در جدول-۱ خلاصه ای از رفتار مغناطیس مشاهده شده در فلزات به شکل ذرات ریز را در مقایسه با همان فلزات بصورت توده ای نشان می دهد.

فلز توده ای نانوذرات
K, Na
Fe, Co, Ni
Gd, Tb
Rh
پارامغناطیس
فرومغناطیس
فرومغناطیس
پارامغناطیس فرومغناطیس
سوپرمغناطیس
سوپرمغناطیس
فرومغناطیس

۱-۴-۲) روش های تولید نانوذرات
برای تولید نانوذرات روش های بسیاری متنوعی وجود دارد. این روش ها اساساً به سه دسته تقسیم می شوند:
چگالش از یک بخار، سنتز شمیایی و فرآیندهای حالت جامد نظیر آسیاب کردن.

روش چگالش از بخار که شامل تبخیر فلز جامد سپس چگالش سریع آن برای تشکیل خوشه های نانومتری است که به صورت پودر ته نشین می شوند. روش تبخیر در خلاء بر روی مایعات روان (VERL) ، ذوب در محیط فوق سرد و روش سیم انفجاری جزء روش های چگالش از بخار محسوب می شوند.
روش سنتز شیمیایی شامل رشد نانوذرات در محیط مایع حاوی انواع واکنشگرها است. روش سل ژل نمونه چنین روشی است، در روش های شمیایی اندازه نهایی ذره را می توان با توقف فرآیند هنگامی که اندازه مطلوب به دست آمد یا با انتخاب مواد شمیایی تشکیل دهنده ذرات پایدار و توقف رشد در یک اندازه خاص کنترل نمود. این روش ها معمولاً کم هزینه و پر حجم هستند، اما آلودگی حاصل از آنها می تواند یک مشکل باشد.

از روش فرآیندهای جامد (آسیاب یا پودر کردن) می توان برا ایجاد نانوذرات استفاده نمود. ازاین روش می توان برای تولید نانوذرات از موادی استفاده نمود که در دو روش قبلی به آسانی تولید نمی شوند. در این روش خواص نانوذرات حاصل، تحت تاثیر نوع ماده آسیاب کننده، زمان آسیاب و محیط اتمسفری آن قرار می گیرد.

۱-۴-۳) متداولترین نانوذرات
نانوذرات در حال حاضر از طیف وسیعی از مواد ساخته می شوند، معمولی ترین آنها نانوذرات سرامیکی، فلزی و پلیمری و نانوذرات نیمه رسانا هستند.
نانوذرات نیمه رسانا که به آنها نقاط کوانتومی هم می گویند، نانو ساختارهایی سه بعدی هستند که در مصارف اپتیکی کاربرد زیادی دارند. این نقاط کوانتومی نیمه هادی با تحریک الکتریکی یا توسط گستره وسیعی از طول موج ها در فرکانس های کاملاً مشخص به فلورسانس می پردازند، به این شکل که فرکانسی از

نور را جذب کرده و در فرکانسی مشخص- که تابع اندازه آنهاست- به نشر نور می پردازند. این ذرات همچنین می توانند بر حسب ولتاژ اعمال شده، به انعکاس، انکسار یا جذب نور بپردازند. این ویژگی کاربردهایی در موارد فتوکرومیک و الکتروکرمیک (موادی که ترتیب بر اثر اعمال نوریا الکتریسته تغییر رنگ می دهند) و پیل های خورشیدی خواهد داشت. از دیگر کاربردهای آنها می توان به لیزرهای دارای طول موج های بسیار دقیق و کامپیوترهای کوانتومی اشاره کرد.

نانوذرات سرامیکی، متداولترین هستند که به سرامیک های اکسید فلزی، نظیراکسیدهای تیتانیوم، روی، آلومینیوم و آهن و نانوذرات سیلیکاتی که عموماً به شکل ذرات نانومقیاس خاک رس هستند، تقسیم می شوند. این مواد به علت داشتن نسبت سطح به حجم مناسب به عنوان کاتالیزور در زمینه هایی نظیر باتری ها، پیل های سوختی و انواع فرآیندهای صنعتی قابل استفاده هستند.

یکی از مهمترین کاربردهای این ذرات در کامپوزیت هاست. استفاده ا این نانوذرات در مواد کامپوزیتی می تواند استحکام آنها را افزایش یا وزن آنها را کاهش دهد، مقاومت شمیایی یا حرارتی آنها را زیاد کند، خصوصیات جدیدی نظیر هدایت الکتریکی را به آنها بیفزاید و فعل و انفعال آنها با نور یا دیگر تشعشعات را تغییر دهد. یکی از خواص کامپوزیت های نانو ذره ای سرامیکی در صنعت بسته بندی، کاهش نفوذ پذیری گازهاست. همچنین مقاومت در برابر آتش و مواد شمیایی نیز افزایش یافته و بازیافت این مواد نیز آسانتر می شود.

نانوذرات فلزی نیز دسته دیگری از این ذرات هستند که از فلزات مختلف بدست آمده و خواص جالبی را از خود نشان می دهند.ک این نانوذرات فلزی نیز در کامپوزیت ها به کار می روند، به خصوص کامپوزیتهایی که زمینه پلیمری دارند. این نانوکامپوزیت ها، به دلیل ممانعت خوبی که در مقابل تداخل الکترومغناطیسی به وجود می آورند، می توانند در رایانه و تجهیزات الکترونیکی به کار رود. نانوکامپوزیت های نانوذره ای فلزی قابلیت ها ویژه ای در هدایت گرمایی و الکتریکی دارند که کارآیی آنها را افزایش می دهد.

 

۱-۴-۴) کاربردهای نانوذرات
همان طور که اشاره شد یکی از خواص نانوذرات نسبت سطح به حجم بالای این مواد است. با استفاده از این خاصیت می توان کاتالیزورهای قدرتمندی را در ابعاد نانومتری تولید نمود.
بکارگیری نانوذرات در تولید مواد دیگر می تواند استحکام آن ها را افزایش دهد و یا وزن آن ها را کم کند، مقاومت شیمیایی و حرارتی آنها را بالا ببرد، و واکنش آن ها را در برابر نور و تشعشعات دیگر تغییر دهد. پس اولین کاربردی که برای نانوذرات می توان متصور شد، استفاده از این مواد در تولید نانوکامپوزیت هاست که در فصل بعدی به طور کامل به آنها خواهیم پرداخت.
از نانوذرات همچنین در ساخت انواع ساینده ها، زنگ ها، لایه های محافظتی جدید و بسیار مقاوم برای شیشه ها و عینک ها (ضدجوش و نشکن)، کاشی ها و در حفاظ های الکترومغناطیسی شیشه های اتومبیل و در و پنجره استفاده می شود. پوشش های ضد نوشته برای دیوارها و پوشش های سرامیکی برای افزایش استحکام سلول های خورشیدی نیز با استفاده از نانوذرات تولید شده اند.

فصل دوم

آشنایی با نانوکامپوزیت ها

۲-۱) مقدمه
مواد و توسعۀ آنها از پایه های تمدن بشربه شمار می روند. به طوری که دوره های تاریخی را با مواد نامگذاری کرده اند مثل عصرسنگ، عصر برنز، عصر آهن و… . عصر جدید با شناخت یک ماده جدید به وجود نمی آید، بلکه با بهینه کردن و ترکیب چند ماده می توان پا در عصر نوین گذاشت. در کاربردهای مهندسی، اغلب تلفیق خواص مورد نیاز است. به عنوان مثال در صنایع هوا و فضا، کاربردهای زیر آبی، حمل و نقل و امثال آنها، به موادی نیاز است که ضمن داشتن استحکام بالا، سبک باشند، مقاومت سایشی خوبی داشته باشند و… .

از آنجا که نمی توان ماده ای یافت که همه خواص مورد نظر را داشته باشد، باید به دنبال چاره ای دیگر بود. کلید این مشکل استفاده از کامپوزیتهاست. کامپوزیتها موادی چند جزئی هستند که خواص آنها در مجموع از هر کدام از اجزاء بهتراست. ضمن آنکه اجزای مختلف، کارآیی یکدیگررا بهبود می بخشد.
دانشمندان علوم فیزیک، مواد و سایر علوم به این نتیجه رسیده اند که اگر بتوان مواد را در مقیاس های کوچک تری تهیه کرد، پیوندهایی که این ماده با فازهای اطراف خود برقرار می کند، به مراتب قویتر از مقیاسهای بزرگتر است. در همین راستا بود که نانوکامپوزیت ها تولید شدند که در این نوع مواد کامپوزیتی حداقل یکی از فازهای تشکیل دهنده ماده مرکب در ابعاد نانومتری قرار دارد. امروزه نانوکامپوزیت ها به دلیل خواص فوق العاده ای که از خود نشان می دهند به سرعت در حال گسترش هستند و از آن به عنوان ” تحول بزرگ در مقیاس کوچک” نام می برند.

 

۲-۲ ) نانوکامپوزیت چیست؟
کامپوزیت همان طور که از نام آن پیداست از فعل to compose به معنای ترکیب کردن گرفته شده و کامپوزیت ( composite ) یعنی مرکب. مواد کامپوزیتی به موادی گفته می شوند که از ترکیب چند ماده به وجود آمده اند که هر یک از اجزاء تشکیل دهندۀ آن دارای خواص مختلفی هستند که ترکیب آنها با هم، سبب بهبود خواص ماده کامپوزیتی می شود.

با توجه به تعریف بالا کامپوزیتها از دو قسمت تشکیل شده اند: قسمت زمینه و قسمت تقویت کننده که به زمینه اضافه می شود تا دسته ای از خواص آن را بهبود بخشد. در تصویر-۱ حالتهای مختلف قرارگیری فاز تقویت کننده در ماده زمینه دیده می شود.

 

اولین وظیفه زمینه احاطه ماده تقویت کننده است. به طوری که نگذارد ماده تقویت کننده پراکنده شود. وظیفه دوم، محافظت از ماده تقویت کننده در برابر عوامل شیمیایی است؛ و وظیفه سوم این است که چون مواد زمینه را نرم انتخاب می کنند، وقتی نیرو به ماده کامپوزیت وارد می شود، توسط زمینه به ماده تقویت کننده انتقال داده شود تا ماده تقویت کننده نیرو را تحمل کند.
تقویت کننده های موادی هستند که به صورت تکه تکه در یک زمینه پیوسته واردمی شوند تا خواص ماده زمینه را بهتر کنند، تقویت کننده ها می توانند به صورت یک صفحه، یک رشته (نخ) ، یا یک ذره (پودر) واردحجم زمینه شوند. (تصویر-۲).

نانوکامپوزیت ، همان کامپوزیت در مقیاس نانومتر (۹-۱۰) است. نانوکامپوزیت ها در دو فاز تشکیل می شوند. در فاز اول ساختار بلوری در ابعاد نانو ساخته می شود که زمینه یا ماتریس کامپوزیت به شمار می رود.
در فاز دوم ذراتی در مقیاس نانو به عنوان تقویت کننده برای استحکام، مقاومت، هدایت الکتریکی و … به فاز اول یا ماتریس اضافه می شود.

۲-۲-۱) طبقه بندی نانوکامپوزیت ها
انواع نانوکامپوزیت ها را می توان بر اساس ماده زمینه آن ها به شرح زیر طبقه بندی کرد:
نانوکامپوزیت های زمینه پلیمری
نانوکامپوزیت های زمینه سرامیکی
نانوکامپوزیت های زمینه فلزی

نانوکامپوزیت های زمینه بین فلزی
در بین نانوکامپوزیت ها، بیشترین توجه به نانوکامپوزیت های زمینه پلیمری معطوف است. کامپوزیت های پلیمری به علت خواصی مانند استحکام، سفتی و پایداری حرارتی و ابعادی چندین سال است که در ساخت هواپیماها به کار می روند. با رشد نانوتکنولوژی، کامپوزیت های پلیمری بیش از پیش به کار گرفته خواهند شد. کامپوزیت هایی که بستر فلزی دارند، کم وزن و سبک اند و به علت استحکام و سختی بالا، کاربردهای وسیعی در صنایع خودرو و هوا-فضا پیدا کرده اند. در ادامه بحث به شرح کامل هر یک ازا ین نوع مواد خواهیم پرداخت.

اما دسته بندی دیگری که برای نانوکامپوزیت ها وجود دارد، دسته بندی ابعادی نانوکامپوزیت هاست. در نانوکامپوزیت ها با توجه به آنکه فاز نانومتری چند بعدش در مقیاس نانومتر قرار دارد. به سه دسته تقسیم می شوند.
۱- نانوکامپوزیت های هم بعد

۲- نانوکامپوزیت های دوبعدی
۳- نانوکامپوزیت های تک بعد

در نانوکامپوزیت های هم بعد، فاز یا فازهای نانومتری در هر سه بعد در مقیاس نانو قرار دارند. برای این دسته مواد میتوان به سیلیکای کروی تولید شده در فرآیند سل- ژل اشاره کرد.

نانوکامپوزیت های دو بعدی فاز نانومتری آنها در دو بعد آن در مقیاس نانو قرار دارد که لوله های نانو متری کربن یا ویسکرها مثالی برای این دسته می باشند. فاز نانومتری تقویت کننده در نانوکامپوزیت های تک بعدی تنها در یکی از ابعاد دارای مقیاس نانو است. این خانواده از نانوکامپوزیت ها تحت عنوان نانوکامپوزیت های پلیمر- کریستالهای لایه ای شناخته می شوند. در طبیعت از این نوع کریستالهای لایه ای شکل به وفور یافت می شود. امروزه نانوکامپوزیت های سیلیکاتی لایه ای به طور گسترده ای مورد مطالعه قرار می گیرند که علت آن را می توان سهولت دسترسی به خارک رس و همچنین خصوصیت نفوذپذیری آن نام برد.

 

۲-۳) نانوکامپوزیت های زمینه پلیمری
همان طور که گفتیم در بین نانوکامپوزیت ها، نانوکامپوزیت های زمینه پلیمری بیشترین کاربرد و استفاده را دارند و در درجه اول اهمیت قرار دارند. سیلیکات های لایه ای تا به امروز بیشترین کاربرد را در ساخت نانوکامپوزیت ها داشته اند. اخیراً به شدت از نانو لوله های کربنی در ساخت این نانوکامپوزیت ها استفاده می شود.
با توجه به خواص متنوع نانوکامپوزیت های زمینه پلیمری، دلایل زیادی رامی توان برای گسترش نانوکامپوزیت های پلیمری نام برد. اولین دلیل، خواص بی نظیر مکانیکی، شیمیایی و فیزیکی آن هاست. نانوکامپوزیت های پلیمری عموماً دارای استحکام بالا، وزن کم، پایداری حرارتی بالا، رسانایی الکتریکی بالا و مقاومت شیمیایی بالایی هستند. با اضافه کردن درصد کمی از مواد نانو به یک پلیمر خالص، استحکام کششی، استحکام تسلیم و مدول یانگ افزایش چشمگیری می یابد. به عنوان مثال با افزودن تنها ۰۴/۰ درصد حجمی میکا (یک نوع سیلیکات) با ابعاد ۵۰ نانومتر به اپوکسی مدول یانگ این ماده ۵۸ درصد افزایش خواهد یافت.
همچنین با اضافه کردن ۸/۴ درصد حجمی میکای نانومتری به پلی¬آمیدها میزان نفوذ پذیری آب در آن ها ۵۰ درصد کاهش می یابد. تحقیقات انجام گرفته در دهه اخیر نشان می دهد که استحکام کششی و مدول کششی کامپوزیت های زمینه پلیمری با پر کنندۀ نانو سیلیکات لایه ای دو برابر می شود، بدون آنکه چقرمگی آنها دچار تغییر گردد. به عنوان مثال تعداد زیادی از پلیمرها نظیر نایلون، اولفین و نیز رزین هایی مانند اپوکسی ، اورتان، سیلوگزان با افزودن ۲% حجمی سیلیکات لایه ای به خواص فوق رسیده اند.

دلیل دوم توسعه نانوکامپوزیت های زمینه پلیمری و افزایش تحقیقات دراین زمینه، کشف نانولوله ها کربنی در سال ۱۹۹۱ میلادی است. استحکام و خواص الکتریکی نانولوله های کربنی به طور قابل ملاحظه ای با نانولایه های گرافیت و دیگر مواد پرکننده تفاوت دارد. این دسته از کامپوزیت ها به دلیل خواص منحصر به فردی که دارند به طور گسترده ای در صنایع خودرو، هوا- فضا و بسته بندی مواد غذایی گسترش یافته اند. چنانچه در صنعت خودرو به دلیل افزایش قیمت سوخت و پیمامدهای اقتصادی ناشی از آن، تقاضا برای استفاده از موادی نظیر نانوکامپوزیت ها پلیمری که هم سبکی لازم و هم استحکامی در حد فلزات دارند، افزایش یافته است.

از دیگر کاربردهای نانوکامپوزیت های پلیمری پوشش های مقاوم به سایش، پوشش های مقاوم به خوردگی، پلاستیک های رسانا، حسگرها، آسترهای مقاوم در دمای بالا و غشاهای جداسازی گازها و سیالات نفتی می باشند.
نکته مهم دیگر این است که ارزش نانوکامپوزیت های پلیمری فقط به خاطر بهبود خواص مکانیکی نمی باشد. در کامپوزیت ها کارآیی موردنیاز، هزینه و قابلیت فرآوری از موضوعات بسیاری مهم می باشد. نانوکامپوزیت های پلیمری بر این محدودیت ها غلبه کرده است.
با توجه به گسترده بودن پلیمرها و رزین ها و همچنین نانو مواد تقویت کننده و کاربردهای فراوان آنها موضوع نانوکامپوزیت های پلیمری بسیاری گسترده می باشد و زمینه های بسیاری برای توسعه آنها وجود دارد.

 

۲-۳-۱) روش های تولید نانوکامپوزیت های زمینه پلیمری
به طور کلی سه روش برای تولید نانوکامپوزیت های پلیمری وجود دارد. این روشها شامل مخلوط سازی مستقیم ، فرآوری محلولی و پلیمریزاسیون درجا هستند در ادامه این سه روش مورد بررسی قرار می گیرد.

 

الف – مخلوط سازی مستقیم
در این روش سوسپانسیونی از مواد نانو به محلول پلیمری اضافه می شود. در ادامه پس از ایجاد اختلاط و اطمینان از توزیع یکنواخت مواد پر کننده در پلیمر و سازگاری آن با زمینه, مخلوط حاصله توسط یک پرس هیدرولیک در یک قالب اکسترود می شود و در نهایت صفحات نازک نانو کامپوزیت بدست می آیند.
محدودیت این روش میزان فاز تقویت کننده یا همان مواد پر کننده است. به عنوان مثال برای تولید نانوکامپوزیت سیلیکا/پلی پروپیلن حداکثر میزان نانوذرات سیلیکا ۲۰ درصد وزنی می تواند باشد. البته به نظر می رسد آگلومره شدن ذرات نیز از دیگر محدودیت های این روش باشد.

 

ب- فرآوری محلولی
با استفاده از این روش می توان بر بعضی از محدودیت های روش مخلوط سازی مستقیم غلبه کرد، ضمن آنکه می توان میزان آگلومراسیون و کلوخه ای شدن نانوذرات در ماده پلیمری را کاهش داد. در این روش به دو صورت می توان نانوکامپوزیت های پلیمری را تولید کرد. اگر ماده زمینه پلیمری و مواد نانو تقویت کنندۀ آن در یکدیگر قابل حل شدن باشند، محلول حاصل را می توان در یک قالب ریخته گری کرده و نانوکامپوزیت تولید نمود در غیر این صورت مخلوط مواد نانو کامپوزیت در یک حلال حل شده و در نهایت با تبخیر حلال، نانوکامپوزیت مورد نظر بدست می آید.

ج- پلیمریزاسیون درجا
در این روش مواد نانو را در منومر و یا محلول منومر پلیمر زمینه جاسازی کرده، و سپس با پلیمریزاسیون، منومر رشد کرده و مواد پر کننده نانومتری را در بر می گیرد. نکته کلیدی در این روش نحوه توزیع مواد نانو در منومر است. با کنترل پیوند بین مواد نانو و ماده زمینه می توان توزیع مورد نظر را بدست آورد.
بسیاری از نانو کامپوزیت های زمینه پلیمری را می توان با این روش تولید کرد.
نانوکامپوزیت هایی نظیر سیلیکا/نایلون ۶ و تیتانیا / پلی متیل متاکریلیت از این دسته هستند.
نکته ای که در روشهای تولید نانوکامپوزیت های پلیمری اهمیت دارد و آن ها را از یکدیگری متمایز می کند، توزیع مناسب ماده پرکننده است. با اصلاح سطحی می توان این توزیع را به شکل یکنواخت به گونه ای انجام داد که از آگلومراسیون
اجزای نانومتری ماده پرکننده جلوگیری شود و توزیع مناسب فاز تقویت کننده فراهم گردد. در واقع نکته مهم در تمام این فرایندها اصلاح فصل مشترک بین پلیمر و اجزای نانومتری است و از آنجایی که مشتق پذیری پلیمرهایی نظیر اپوکسی بالاست، لذا برای اصلاح سطحی باید از مولکول هایی استفاده گردد که اتصال بین ماده پرکننده و پلیمر را بهبود بخشد.

در بحث اصلاح سطحی و بر هم کنش فصل مشترک ماده پرکننده و پلیمر، نوع ماده پرکننده و نسبت سطح تماس به حجم آن از اهمیت زیادی برخوردار است.
در تصویر-۳ نسبت سطح تماس به حجم سه نوع ماده پرکننده نانوکامپوزیت ها یعنی ذره ، الیافت و مواد لایه ای با هم مقایسه شده است

.

در نانو کامپوزیت های زمینه پلیمری از نانوذرات، نانوصفحات ، نانوالیاف و همین طور نانولوله ها به عنوان ماده تقویت کننده استفاده می شود.
این در حالی است که عمدتاً در مورد نانو کامپوزیت های زمینه فلزی و سرامیکی از نانوذرات به عنوان ماده پر کننده استفاده می شود. در نانو کامپوزیت های پلیمری معمولا از پلیمرهای ترموست نظیر اپوکسی, پلی ایمید و پلیمرهای ترموپلاستیک نظیر نایلون ۶ ، پلی اتراترکتون ، پلی پروپیلن و پلی استایرن به عنوان ماده زمینه این کامپوزیت ها استفاده می گردد.

در ادامه پس از ارائه شرح مختصری در خصوص رزین های اپوکسی, نایلون ۶, پلی پروپیلن، پلی استایرن (جدول-۱) به عنوان ماده زمینه این نانو کامپوزیت ها، توضیحات بیشتری راجع به هر کدام از این نانوکامپوزیت ها بر حسب نوع ماده پر کننده و همچنین چند نکته کلیدی در مورد طراحی نانوکامپوزیت های پلیمری ارائه می شود.

 

۱- رزین های اپوکسی
رزین های اپوکسی به دلیل مقاومت شیمیایی زیاد، استحکام چسبندگی زیاد و چقرمگی در عین انعطاف پذیری بالا کاربردهای زیادی را به خود اختصاص داده اند. یک رزین اپوکسی شامل یک گروه اپوکسی است. انواع مختلفی از رزین های اپوکسی در ساخت کامپوزیت ها مورد استفاده قرار می گیرند. معمول ترین رزین اپوکسی مصرفی محصول واکنش بین بیس فنل A و اپی کلریدرین می باشد.

 

۲- نایلون ۶
نایلون ۶ اولین پلیمری است که به عنوان ماده زمینه در تهیه نانوکامپوزیت های پلیمری استفاده شده است. نایلون به عنوان یک پلاستیک مهندسی مطرح است و به دلیل دارا بودن خواصی چون چقرمگی مناسب، ضریب اصطکاک کم و استحکام بالا به طور وسیع کاربرد دارد. این پلیمر یک پلی امید است.

۳- پلی پروپیلن
در حال حاضر رمز موفقیت پروپیلن تجارتی در میزان نظم آن از لحاظ ساختاری می باشد. پلی پروپیلن تجاری، پلیمری چقرمه با مقاومت به ضربه خیلی خوب و خواص الکتریکی مناسب و مقاومت شیمیایی عالی در مقابل اسیدها، بازها و نمک ها است. به علاوه پلی پروپیلن مقاومت خوبی در مقابل آب گرم و شوینده ها از خود نشان می دهد.

۴- پلی استایرن
برخلاف پلیمرهای اشاره شده در بالا، پلی استایرن ساختار بلوری منظمی ندارد و بنابراین بسیار شفاف است (فاقد نواحی بلوری جهت پخش نور می باشد) و ماهیت آمورف دارد. پلی استایرن به راحتی در انواع روش های اکستروژن، قالب گیری تزریقی و قالب گیری بادی برای تولید کامپوزیت ها بکار می رود.

۲-۳-۲) نانوکامپوزیت های زمینه پلیمری حاوی نانوذرات
نانوذرات بیشترین کاربرد را به عنوان ماده تقویت کننده در نانوکامپوزیت ها دارند. اضافه کردن ذراتی همچون سیلیکا، ذرات فلزی و همینطور ذرات آلی و غیرآلی، به ماده زمینه باعث افزایش و بهبود استحکام کششی و مدول الاستیک ماده زمینه می شود.
همانگونه که قبلا اشاره شد با کاهش اندازه ذرات موجود در نانو کامپوزیت های پلیمری در ابعاد نانومتری، خواص فیزیکی، مکانیکی، نوری و غیره در کامپویت ها بهبود می یابد. با جاسازی ذرات نانومتری شیشه ای در پلیمرها می توان نانوکامپوزیت هایی با شفافیت بالا معروف به نانو کامپوزیت های نوری تولید کرد. از این گروه می توان به پوشش های اپوکسی حاوی نانوذرات Sio2، که توانایی جذب اشعه ماوراء بنفش را دارد اشاره کرد.

نمونه ای دیگر از تغییر خواص کامپوزیت های زمینه پلیمری، بهبود چقرمگی شکست با کاهش اندازه ذرات است. به عنوان مثال اگر در رزین پلی استر از ذرات آلومینیوم با سه اندازه مختلف ۲۰ ، ۵/۳ و nm100 استفاده شود، چقرمگی شکست برای هر یک از کامپوزیت ها مطابق تصویر-۴ تغییرات متفاوتی خواهد داشت.

۲-۳-۳) نانوکامپوزیت های زمینه پلیمری حاوی نانولایه ها
در این دسته از نانوکامپوزیت ها معمولا دو نوع نانولایه برای تقویت ماده زمینه بکار برده می شود؛ خاک رس (لایه های سیلیکات) و گرافیت که خود جزء مواد لایه ای شناخته می شوند.

در حال حاضر خاک رس مونت موریلونیت بیشترین استفاده را به عنوان مادۀ پر کننده برای این نوع نانوکامپوزیت ها دارد. این خاک رس، سبک، سخت و به صورت ورقه ای است که برای استفاده آن در نانوکامپوزیت ها می توان صفحات به دست آمده را با ورقه ورقه کردن، به صفحاتی به عرض ۲۰۰ تا ۴۰۰ نانومتر و ضخامت ۱ نانومتر رساند.

نانوکامپوزیت های پلیمری با ماده پرکننده رسی نظیر نانوکامپوزیت های پلی پروپیلن/ رس استفاده زیادی در صنعت خودروسازی دارند و به شکل گسترده ای در قطعات اتومبیل استفاده می شوند. با افزودن ذرات نانومتری خاک رس به لاستیک خودروهای سواری، علاوه بر افزایش استحکام مکانیکی و مقاومت لاستیک در برابر سایش، اعوجاج حرارتی و قابلیت اشتعال لاستیک به طور چشم گیری کاهش می یابد.

مصرف این نانوکامپوزت در شرکت جنرال موتورز ۳۰۰۰۰۰ کیلوگرم در سال است. در حال حاضربازار جهانی برای نانو کامپوزیت های زمینه نایلونی سالیانه حدود ۳ میلیون پوند می باشد که ۲ میلیون آن نایلون تقویت شده توسط ذرات خاک رس نانومتری جهت استفاده درصنایع خودرو و بسته بندی است و یک میلیون پوند دیگر، نایلون تقویت شده با نانولوله های کربنی است که در آمریکا در بدنه خودرو استفاده می شود. انتظار می رود که طی ۱۰ سال آینده ساخت نانوکامپوزیت های بر پایه خاک رس با استفاده از ۲۰ پلیمر به صورت تجاری در آید. این نانوکامپوزت ها اخیرا دو کاربرد تجاری یکی در اجزای زیرین کاپوت خودرو و دیگری در بسته بندی مواد غذایی پیدا کرده اند.

نانوکامپوزیت های پلیمری حاوی خاک رس همچنین می توانند مانع از انتشار بنزین، متانول و سایر حلال های آلی شوند. به عنوان مثال نانوکامپوزیت نایلون ۶ حاوی ۵ درصد وزنی خاک رس، پنج برابر بیشتر از نایلون ۶ معمولی مانع از نشت سوخت می گردد.
نکته حائز اهمیت در این نانوکامپوزیت ها آن است که برای استفادۀ مناسب از نانو لایه های رسی، این لایه ها باید به شکل مجزا و جدا از هم در مادۀ زمینه پخش شوند.

 

به طور کلی دو حالت برای این نانو کامپوزیت ها حاصل می شود که عبارتند از حالت جاداده شده و حالت ورقه ورقه ای . در حالت جاداده شده، مولکول های پلیمری زمینه، بین لایه های منظم رسی قرار می گیرند و منجر به افزایش فضای بین لایه ای خواهند شد ولی همچنان لایه ها به صور منظم باقی می ماند. از طرف دیگر در حالت ورقه ورقه ای لایه های رس از هم مجزا هستند و درون ماده زمینه توزیع شده اند.
حالت ایده آل برای بهبود استحکام و خواص حرارتی این گروه از نانوکامپوزیت ها، در حالت ورقه ورقه ای کامل و توزیع مناسب بدست می آید اما بدست آوردن این حالت دشوار بوده و معمولا این کامپوزیت ها به صورت ورقه ورقه ای جزئی یا جا داده شده بدست می آیند.
درتصویر-۵ مورفولوژی حالات مختلف توزیع لایه های سیلیکات دریک نانوکامپوزیت پلیمری ارائه شده است.

در این شکل ملاحظه می شود که سه حالت توزیع لایه ها به صورت a, b, c وجود دارد. این حالات به ترتیب در حالت a جاسازی کامل در حالت b ورقه ورقه ای شدن کامل و در حالت c ورقه ای شدن و جاسازی جزئی صورت گرفته است.
از مزایای عمده نانو کامپوزیت پلیمری با تقویت کننده خاک رس میتوان به پایداری حرارتی ، کاهش نفوذ پذیری ، کاهش ضریب انبساط حرارتی و افزایش سختی ، استحکام و چقرمگی اشاره کرد .
در جدول ۲ این خواص در نایلون ۶ و نانو کامپوزیت زمینه نایلون ۶ حاوی ۴٫۲ درصد وزنی نانو لایه های مونت موریلونیت مقایسه شده است .

همانگونه که قبلا اشاره شد از گرافیت ورقه ای نیز برای ساخت نانو کامپوزیت های پلیمری می توان استفاده کرد. در این گروه از نانو کامپوزیت ها ، ضخامت لایه های گرافیت با ضخامت خاک رس یکسان است . با نگاهی اجمالی به برخی خصوصیات گرافیت و مقا یسۀ آن با خاک رس، می توان به برخی تغییرات حاصله در نانو کامپوزیت های حاوی ورقه های گرافیت پی برد . در جدول-۳ برخی خواص گرافیت و خاک رس با هم مقایسه شده است .
پایین بودن مقاومت الکتریکی گرافیت از خصوصیات بارز آن است که باعث افزایش هدایت الکتریکی نانو کامپوزیت ها می گردد. گرافیت لایه ای نسبت به دوده کربنی، الیاف کربنی و بخار کربن مقاومت الکتریکی کمتری دارد .

بهبود هدایت الکتریکی مواد پلیمری با افزودن مقادیر کمی از نانو لایه های گرافیتی باعث می شود که حرارت ایجاد شده در قطعات الکتریکی و تجهیزات کامپیوتری کاهش یافته و قابل کنترل باشد.
با توجه به خواص ارائه شده ، کامپوزیت های حاوی نانو لایه های گرافیت، دارای هدایت الکتریکی بالا و نفوذ پذیری کمی هستند . برای تولید این نانو کامپوزیت ها ابتدا با امواج مافوق صوت لایه های گرافیت در منومر به صورت یکنواخت توزیع می شوند و در نهایت با پلیمریزاسیون در جا بدست می آید . نمونه ای از این نانو کامپوزیت ها در تصویر-۶ ارائه شده است. در این تصویر توزیع نانو لایه های گرافیت در زمینه پلی استایرن مشخص است .
۲-۳-۴) نانو کامپوزیت های زمینه پلیمری حاوی نانو الیاف کربنی
نانو الیاف کربنی به عنوان ماده پر کننده در پلیمر های مختلف نظیر پلی پروپیلن، پلی کربنات نایلون و اپوکسی ، پلی اترسولفن استفاده می شوند. قطر نانوالیاف کربنی که در نانو کامپوزیت ها استفاده می شوند بین ۵۰ تا ۲۰۰ نانو متر است . این نانو الیاف مورفولوژیهای متعددی دارند که ساختار نی شکل و چیدمان فنجانی دو نوع از این مورفولوژی ها هستند . تصاویر TEM این ساختار ها در تصویر-۷ آمده است .

خواص نانو کامپوت های حاوی نانو الیاف کربنی نظیر چگالی پایین ، انبساط حرارتی کم ، مقومت بالا در برابر شوک های حرارتی و استحکام بالا در دماهای بالا باعث شده که این نانو کامپوزیت ها در صنایع خودرو و هوا-فضا مورد توجه زیادی قرار گیرند . بسیاری از خواص نانو کامپوزیت های حاوی نانو الیاف به مراحل ساخت نانو کامپوزیت ، خصوصیات نانو الیاف کربنی ، نحوه توزیع نانو الیاف و چسبندگی آن ها به زمینه ارتباط دارند.
اصولا برای تولید این نانو کامپوزیت ها با توریع یکنواخت الیاف ، از مکانیزم های با نیروی برشی شدید مثل اکستروژن که در روش مخلوط سازی مستقیم توضیح داده شد، استفاده می شود. محدودیت اصلی این روش تمایل به اکسیداسیون است که با اصلاح سطحی و یا افزودن پر کننده های سرامیکی مناسب ، می توان این مشکل را تا حدودی کم کرد .

۲-۳-۵ ) نانو کامپوزیت های پلیمری حاوی نانو لوله های کربنی
تحقیقات در زمینه توزیع نانو لوله های کربنی در پلیمر ها بسیار جالب است . نانو لوله های کربنی به جز بهبود خواص فیزیکی و مکانیکی پلیمر ها باعث بهبود خواص حرارتی و الکتریکی رزین ها نیز می شوند . قطر نانو لوله های کربنی که در نانو کامپوزیت استفاده می شوند بین ۱ تا ۱۰۰ نانو متر و نسبت طول به قطر آن ها بین ۱۰۰ تا ۱۰۰۰ است . در ادامه پس از بررسی برخی از خواص نانو لوله های کربنی به روشهای تولید نانو کامپوزیت های پلیمری حاوی نانو لوله های کربنی پرداخته می شود.

الف- نانو لوله های کربنی ، تک دیواره و چند دیواره
هر دو نوع نانولوله های کربنی تک دیواره و چند دیواره به عنوان ماده تقویت کنده در نانو کامپوزیت ها قابل استفاده هستند. اما علاقه بیشتر به استفاده از نانو لوله های تک دیواره به دلیل خصوصیات برتر مکانیکی و الکتریکی آنهاست .
این درحالی است که نانولوله های چند دیواره به علت پیوند های داخلی ضعیف تر، استحکام کمتری نسبت به تک دیواره ها دارند و کمتر مورد استفاده قرار می گیرند .