انرژی

مقدمه
از زمانی که انسانهای اولیه شروع به استفاده از انرژی کرده‌اند تا حال ، انرژی به انرژیهای قدیمی و انرژیهای نو تقسیم بندی می‌شود.
• انرژیهای قدیمی شامل: چوب ، زغال سنگ ، انرژی باد (برای کشتیهای بادی) ، نفت و … می‌باشند.
• انرژیهای نو شامل: انرژی خورشید ، باد (برای ماشینهای بادی امروزی) ، هیدروژن ، اتم ، انرژی هسته‌ای و … هستند.
• این روزها همه صحبت از صرفه جویی در مصرف انرژی است و دانشمندان بیشترین تلاش خود را صرف پیدا کردن راههایی برای بدست آوردن انرژی بیشتر و ارزانتر می‌کنند و از باد ، خورشید ، جزر و مد دریاها و انرژی موجود در اتمها نیز مدد می‌جویند. اما جالب است بدانید که همین دانشمندان هم به سختی می‌توانند، تعریف دقیقی از انرژی ارائه کنند.

در حقیقت اگر انرژی را به صورت “کار ذخیره شده” یا “توانایی انجام کار” تعریف کنیم، توانسته‌ایم تا حدود زیادی تعریفی از انرژی ارائه نمائیم. هر چند که این تعریف چندان جامع و کامل نیست. در حقیقت وجود ما و دنیای اطراف ما بدون وجود انرژی و حتی تبدیل آن به صورتهای گوناگون امری محال است. لذا انرژی نه از بین می‌رود ونه به وجود می‌آید!

• در تعریف انرژی می‌توانیم بگوییم که: انرژی توانایی انجام کار است. یعنی تمامی موجودات برای انجام کار باید غذا مصرف کنند تا این غذا بصورت انرژی در ماهیچه‌های آنها ذخیره شود که در موقع لازم بتوانند از آن استفاده کنند. با پیشرفت و انقلاب تکنولوژیک تمامی دستگاهها و ماشینها به نوعی از انرژیهای مختلف استفاده می‌کنند. مثلا ماشین بنزین مصرف نکند برای ما نمی‌تواند کار انجام دهد یا یخچال انرژی الکتریکی مصرف نکند، نمی‌تواند عمل سرمایشی انجام دهد.
در حقیقت انرژی همواره از صورتی به صورت دیگر تبدیل می‌شود و همین امر کارها را به سرانجام می‌رساند. برای نمونه انرژی موجود در دریاچه‌های پشت سدها ، انرژی ارتفاعی است. خودورهای در حال حرکت ، مثل بسیاری از اشیا متحرک دیگر ، دارای انرژی حرکتی هستند. در کمان تیراندازی انرژی کششی نهفته است و در ابرهای باران زا نیز می‌توانیم انرژی الکتریکی را بیابیم. اما این انرژی کار آمد و مهم را چگونه اندازه گیری می‌کنند!؟
موقعیت جهانی انرژی
• سرنوشت انسانها بر این روال است که در مقابل خطر متحد می‌شوند. ولی بر عکس در مورد مراکز هسته‌ای عقاید بسیار متفاوت است. زیرا بعضی از ملتها از دیگری می‌ترسند. در چنین شرایطی ، قانون طبیعی اتحاد به علت استفاده نادرست توسط قانون دیگر طبیعت به نام عدم اعتماد جایگزین می‌شود.

• بخشی از مردم به انرژی توجه بیشتری دارند و تنها راه حل را در افزایش مصرف انرژی الکتریکی که از انرژی اتمی تولید می‌شود، می‌دانند و تصور می‌کنند که افزایش تکنیک ، سبب کاهش خطر به میزان قابل توجه برای همه خواهد بود. آنان در اتم ، در ادامه آنچه که در شیمی ، در هواپیمایی ، در پزشکی و در تحقیقات فضایی انجام یافته ، پیشرفت حتمی را می‌بینند.

• بعضی دیگر از انرژی اتمی بیمناک هستند آنها بمب اتمی را بخاطر می‌آورند که به توسط مواد رادیواکتیو تشعشعات هسته‌ای نامرئی را بوجود می‌آورند، که برای محیط زیست بسیار زیان بار است.
• طرفداران استفاده از انرژیهای غیر هسته‌ای ، اجتماع طبیعت و علم را جویا هستند تا روشهای دیگری را برای تولید انرژی و برای انرژی گیری بوجود می‌آورند.

اندازه گیری انرژی
بدون تردید اندازه گیری انرژی با توجه به اهمیت زیاد آن ، باید بسیار دقیق باشد، آن هم با ارزش روز افزون انرژی ، که دنیا را دگرگون ساخته است. برای اندازه گیری انرژی واحدهایی وجود دارند که معروفترین آنها “کیلو وات – ساعت” (KWh) است. میزان مصرف برق هر وسیله برقی خانگی را با همین واحد اندازه گیری می‌کنند.
منابع انرژی

ما برای تأمین انرژی مورد نیاز خود سه گروه انرژی را در اختیار داریم. گروه اول مواد سوختی سنگواره‌ای ، از قبیل زغال سنگ ، نفت و گاز طبیعی هستند که بازمانده گیاهان وجانورانی می‌باشند که میلیونها سال قبل می‌زیسته‌اند. جالب اینکه ، این منابع بسیار مهم انرژی ، که می‌توان از آنها دارو و بسیاری از مواد مصنوعی ارزشمند دیگر را تهیه کرد، در حجم وسیعی سوزانده می‌شوند.

 

گروه دوم منابع انرژی تجدید شدنی است. مانند خورشید ، باد ، جزر و مد ، نیروی آب و گرمای محیط ، که بدون دخالت انسان خود به خود تجدید می‌شوند و به محیط زیست نیز صدمه نمی‌زنند. متأسفانه استفاده چندانی از اینگونه انرژیها به عمل نمی‌آید. گروه سوم نیز “مواد سوختنی هسته‌ای” مانند “اورانیوم” و “پلوتونیوم” هستند که انرژی عظیم و شگفت آوری را برای ما به ارمغان می‌آورند و این انرژی از هسته اتم به عمل می‌آید. جالب است بدانید که از سوختن یک کیلوگرم زغال سنگ تقریبا هشت کیلو وات ساعت حرارت بدست می‌آید، در صورتی که از یک کیلوگرم اورانیم ۲۳۰۰۰۰۰۰ کیلو وات ساعت حرارت حاصل می‌شود. البته این انرژی در صورت استفاده نادرست خطرات غیر قابل باوری را به همراه می‌آورد.
انرژی را به صورت دیگر نیز دسته بندی می‌کنند. برای نمونه آن را به دو دسته انرژی اولیه و ثانویه تقسیم بندی می‌کنند. “انرژی اولیه” انرژی بدست آمده از موادی است که بطور طبیعی وجود دارند، که از جمله می‌توان از نفت خام ، گاز و زغال سنگ نام برد. در حالی که “انرژی ثانویه” آن دسته از انرژیهایی هستند که از ناقلان انرژی اولیه بدست می‌آیند. مانند جریان الکتریکی ، بنزین و مواد سوختنی گرمازا. متأسفانه ، هنوز علم انسان آنقدر پیشرفت نکرده است که از قسمت اعظم انرژی استفاده کند، زیرا تنها قسمت بسیار کوچکی از آن بصورت مفید به مصرف می‌رسد که از این مقدار کم ، بیشترین سهم به مصرف در لوازم خانگی اختصاص دارد و صنایع در ردیف دوم قرار دارند و وسایل نقلیه عمومی در ردیف کم مصرف‌ترین وسایل قرار دارند.

چشم انداز
نیاز جهانی به انرژی اولیه در حال حاضر حدود ۱۲ میلیارد تن SKE (واحد زغال سنگ) در سال است و مسلما این مقدار انرژی مورد نیاز ، پیوسته بیشتر و بیشتر هم خواهد شد و این در حالی است که اگر انسانها با صرفه جویی زیاد هم انرژی را مصرف کنند، تا یکصد سال دیگر موادی مثل نفت خام و گاز پایان می‌رسند و زغال سنگ نیز حداکثر تا دو قرن دیگر پاسخگوی بخشی از نیاز شدید انسان به انرژی خواهد بود. ذخایر اورانیوم قابل استخراج زمین نیز توانایی تولید ۱۵۳ میلیارد تن SKE انرژی را دارند.
این مقدار در نگاه نخست ناچیز به نظر می‌رسد، ولی با توجه به دستیابی انسان به فن‌آوریهای جدید می‌تواند چندین قرن مسأله انرژی را حل کند، اما برای آینده دور ناچیز است! به هر حال احتمال یافتن انرژیهای نو در قرنهای آینده هم غیر ممکن نیست و می‌توان آن را بدست آورد، مشروط بر اینکه آلودگی ناشی از مصرف انرژی طبق روند کنونی پیش نرود و محیط زیست انسان و سایر جانداران را به مخاطره نیندازد.

در حقیقت ما به اندازه مواد موجود انرژی داریم. سنگ ، ساعت و انسان همه یک وجه اشتراک دارند که همان جرم آنهاست که وزن مخصوص است. هر چیزی که جرم دارد ماده است. البته ناقلان انرژی بدون جرم نیز وجود دارند. برای نمونه امواج نوری جزو این دسته هستند. تا آغاز قرن کنونی چنین فرض می‌شد که جرم و انرژی دو چیز متفاوت هستند و هرگز به یکدیگر تبدیل نمی‌شوند. اما در اوایل قرن حاضر “آلبرت انیشتین” ثابت کرد که ماده فقط یکی از شکلهای متعدد قابل تصور انرژی است. او با فرمول معروف خود E = mc2 که رابطه بین سرعت ، جرم و انرژی را بیان می‌کند، سخن از تبدیل ماده به انرژی را به میان آورد و دنیای علم را دگرگون ساخت و واکنشگرهای رآکتورها اتمی را برای بشر به ارمغان آورد.

هر چند که همچون همیشه ، بمبهای اتمی و در پی آنها بمبهای هیدروژنی نیز روانه بازار پر رونق سلاحهای جنگی مخوف شدند و در اولین قدم شهر هیروشیمای ژاپن را به تلی از خاک بدل کردند. به هر حال مطالعات و تحقیقات دانشمندان در مورد دستیابی به انواع ساده‌تر و ارزانتر انرژی در هر دو جهت مثبت و منفی کاربردهای فراوانی داشته است و در این میان شاید سهم ما بیشتر از هر چیزی درک آن حقیقت مهم و اساسی باشد که مصرف انرژی توسط فرد فرد ما می‌تواند مشخص کننده (کاهش یا افزایش) سرعت حرکت کشور در مسیر توسعه باشد.

قضیه کار و انرژی
معمولا بیشترین کاربرد انرژی جنبشی در بحث حرکت در قضیه کار و انرژی ظاهر می‌شود. لازم به یادآوری است که هرگاه در اثر اعمال نیرویی ، یک جسم از محل اولیه خود جابجا شود، در این صورت می‌گویند که نیرو بر روی جسم کار انجام می‌دهد. بنابراین قضیه کار و انرژی بیان می‌کند که هرگاه بر روی جسمی کار انجام شود، انرژی جنبشی آن تغییر می‌کند. به عبارت دیگر تغییرات انرژی جنبشی با انجام کار انجام شده بر روی جسم برابر است.

 

قضیه کار و انرژی قانون جدید و مستقلی از مکانیک کلاسیک نیست. این قضیه برای حل مسائلی مفید است که در آنها کار انجام شده توسط نیروی برایند به راحتی قابل محاسبه است و ما می‌خواهیم سرعت ذره را در مکانهای خاصی پیدا کنیم. آنچه بیشتر اهمیت دارد این واقعیت است که قضیه کار و انرژی نقطه آغازی برای یک تعمیم جامع در علم فیزیک است. چون در بسیاری از موارد بهتر است کار انجام شده توسط هر نیرو را جداگانه محاسبه کرده و نام خاصی برای کار انجام شده توسط هر نیرو قائل شویم. لذا آنچه قبلا در مورد معتبر بودن این قضیه در مواردی که به صورت کار انجام شده توسط نیروی برایند تعبیر می‌کنیم، مشکلی ایجاد نمی‌کند.
یکای انرژی جنبشی
انرژی جنبشی یک جسم در حال حرکت با کاری که می‌تواند انجام دهد تا به حال سکون برسد، متناسب است. این نتیجه اعم از این که نیروهای اعمال شده ثابت یا متغیر باشند، صادق است. بنابراین یکای انرژی جنبشی و کار یکسان خواهند بود و انرژی جنبشی مانند کار یک کمیت اسکالر است. انرژی جنبشی گروهی از ذرات صرفا از انرژی جمع اسکالر انرژیهای جنبشی تک تک ذرات آن گروه بدست می‌آید.

انرژی جنبشی جسم صلب
معمولا در مورد حرکت جسم صلب به عنوان سیستمی از ذرات ، دو نوع انرژی جنبشی می‌توانیم تعریف کنیم. این دو نوع انرژی که بواسطه نوع حرکت به دو صورت متفاوت می‌تواند وجود داشته باشد.
انرژی جنبشی انتقالی

گفتیم که انرژی کمیتی اسکالر است. بنابراین در مورد یک سیستم متشکل از چند ذره ، انرژی جنبشی کل برابر با مجموع انرژی جنبشی تک تک ذرات خواهد بود. اما در مورد یک جسم صلب که تعداد ذرات خیلی زیاد است، نقطه‌ای به عنوان مرکز جرم تعریف می‌شود که نماینده کل جسم صلب است. بنابراین انرژی جنبشی انتقالی نیز به صورت نصف حاصلضرب جرم جسم صلب در مجذور سرعت مرکز جرم تعریف می‌شود.

انرژی جنبشی دورانی
جسم صلبی را در نظر بگیرید که با سرعت زاویه‌ای ω حول محوری که نسبت به یک چارچوب لخت خاص ثابت است، می‌چرخد. هر ذره این جسم در حال دوران مقدار معینی انرژی جنبشی دارد. چون تعداد این ذرات در جسم صلب زیاد است، لذا کمیتی به نام لختی دورانی تعریف می‌شود. لختی دورانی به صورت مجموع جملاتی تعریف می‌شود که هر جمله با حاصل ضرب جرم یک ذره از جسم صلب در مجذور فاصله عمودی ذره از محور دوران برابر است. بنابراین انرژ ی جنبشی دورانی جسم صلب که بخاطر دوران حاصل می‌شود، برابر است با نصف حاصل ضرب لختی دورانی جسم صلب در مجذور سرعت زاویه‌ای.

این رابطه شبیه انرژی جنبشی انتقالی جسم است. یعنی سرعت زاویه‌ای مانسته سرعت خطی است و لختی دورانی مانسته جرم لختی یا جرم انتقالی است. هر چند جرم یک جسم به محل آن بستگی ندارد، ولی لختی دورانی به محوری که جسم حول آن می‌چرخد، بستگی دارد. در واقع می‌توان گفت که انرژی جنبشی دورانی همان انرژی جنبشی انتقالی معمولی تمام اجزای جسم است و نوع جدیدی از انرژی نیست. انرژی جنبشی دورانی در واقع راه مناسبی برای بیان انرژی جنبشی هر جسم صلب در حال دوران است. انرژی جنبشی دورانی جسمی که با سرعت زاویه‌ای معین می‌چرخد، نه تنها به جرم جسم بستگی دارد، بلکه به چگونگی توزیع جرم آن نسبت به محور دوران نیز وابسته است.

 

انرژی خورشیدی
خورشید نه تنها خود منبع عظیم انرژی است، بلکه سرآغاز حیات و منشاء تمام انرژیهای دیگر است. طبق برآوردهای علمی در حدود ۶۰۰۰ میلیون سال از تولد این گوی آتشین می‌گذرد و در هر ثانیه ۲/۴ میلیون تن از جرم خورشید به انرژی تبدیل می‌شود. با توجه به وزن خورشید که حدود ۳۳۳ هزار برابر وزن زمین است. این کره نورانی را می‌توان به‌عنوان منبع عظیم انرژی تا ۵ میلیارد سال آینده به حساب آورد.
قطر خورشید ۶۱۰ × ۳۹/۱ کیلومتر است و از گازهایی نظیر هیدروژن (۸/۸۶ درصد) هلیوم (۳ درصد) و ۶۳ عنصر دیگر که مهم‌ترین آنها اکسیژن – کربن – نئون و نیتروژن است تشکیل شده‌است.
میزان دما در مرکز خورشید حدود ۱۰ تا ۱۴ میلیون درجه سانتیگراد می‌باشد که از سطح آن با حرارتی نزدیک به ۵۶۰۰ درجه و به صورت امواج الکترو مغناطیسی در فضا منتشر می‌شود.
زمین در فاصله ۱۵۰ میلیون کیلومتری خورشید واقع است و ۸ دقیقه و ۱۸ ثانیه طول می‌کشد تا نور خورشید به زمین برسد. بنابراین سهم زمین در دریافت انرژی از خورشید حدود از کل انرژی تابشی آن می‌باشد.
جالب است بدانید که سوختهای فسیلی ذخیره شده در اعماق زمین، انرژیهای باد و آبشار و امواج دریاها و بسیاری موارد دیگر از جمله نتایج همین مقدار انرژی دریافتی زمین از خورشید می‌باشد.
تاریخچه انرژی خورشیدی

شناخت انرژی خورشیدی و استفاده از آن برای منظورهای مختلف به زمان ماقبل تاریخ باز می‌گردد. شاید به دوران سفالگری، در آن هنگام روحانیون معابد به کمک جامهای بزرگ طلائی صیقل داده شده و اشعه خورشید، آتشدانهای محرابها را روشن می‌کردند. یکی از فراعنه مصر معبدی ساخته بود که با طلوع خورشید درب آن باز و با غروب خورشید درب بسته می‌شد.

ولی مهم‌ترین روایتی که درباره استفاده از خورشید بیان شده داستان ارشمیدس دانشمند و مخترع بزرگ یونان قدیم می‌باشد که ناوگان روم را با استفاده از انرژی حرارتی خورشید به آتش کشید گفته می‌شود که ارشمیدس با نصب تعداد زیادی آئینه‌های کوچک مربعی شکل در کنار یکدیگر که روی یک پایه متحرک قرار داشته‌است اشعه خورشید را از راه دور روی کشتیهای رومیان متمرکز ساخته و به این ترتیب آنها را به آتش کشیده‌است. در ایران نیز معماری سنتی ایرانیان باستان نشان دهنده توجه خاص آنان در استفاده صحیح و مؤثر از انرژی خورشید در زمان‌های قدیم بوده‌است.

با وجود به آنکه انرژی خورشید و مزایای آن در قرون گذشته به خوبی شناخته شده بود ولی بالا بودن هزینه اولیه چنین سیستمهایی از یک طرف و عرضه نفت و گاز ارزان از طرف دیگر سد راه پیشرفت این سیستمها شده بود تا اینکه افزایش قیمت نفت در سال ۱۹۷۳ باعث شد که کشورهای پیشرفته صنعتی مجبور شدند به مسئله تولد انرژی از راههای دیگر (غیر از استفاده سوختهای فسیلی) توجه جدی‌تری نمایند.
کاربردهای انرژی خورشیدی

در عصر حاضر از انرژی خورشیدی توسط سیستم‌های مختلف و برای مقاصد متفاوت استفاده و بهره‌گیری می‌شود که عبارت‌اند از:

۱٫ استفاده از انرژی حرارتی خورشید برای مصارف خانگی، صنعتی و نیروگاهی.
۲٫ تبدیل مستقیم پرتوهای خورشید به الکتریسیته بوسیله تجهیزاتی به نام فتوولتائیک.
استفاده از انرژی حرارتی خورشید
یک فروند هواپیمای آزمایشی خورشیدی ناسا
این بخش از کاربردهای انرژی خورشید شامل دو گروه نیروگاهی و غیر نیروگاهی میباشد.
کاربردهای نیروگاهی
تأسیساتی که با استفاده از آنها انرژی جذب شده حرارتی خورشید به الکتریسیته تبدیل می‌شود نیروگاه حرارتی خورشیدی نامیده می‌شود این تأسیسات بر اساس انواع متمرکز کننده‌های موجود و بر حسب اشکال هندسی متمرکز کننده‌ها به سه دسته تقسیم می‌شوند:
• نیروگاههایی که گیرنده آنها آینه‌های سهموی ناودانی هستند (شلجمی باز)
• نیروگاه‌هایی که گیرنده آنها در یک برج قرار دارد و نور خورشید توسط آینه‌های بزرگی به نام هلیوستات به آن منعکس می‌شود. (دریافت کننده مرکزی)
• نیروگاه‌هایی که گیرنده آنها بشقابی سهموی (دیش) می‌باشد (شلجمی بشقابی)
قبل از توضیح در خصوص نیروگاه خورشیدی بهتر است شرح مختصری از نحوه کارکرد نیروگاه‌های تولید الکتریسیته داده شود. بهتر است بدانیم در هر نیروگاهی اعم از نیروگاههای آبی، نیروگاههای بخاری و نیروگاههای گازی برای تولید برق از ژنراتورهای الکتریکی استفاده می‌شود که با چرخیدن این ژنراتورها برق تولید می‌شود. این ژنراتورهای الکتریکی انرژی دورانی خود را از دستگاهی بنام توربین تأمین می‌کنند. بدین ترتیب می‌توان گفت که ژنراتورها انرژی جنبشی را به انرژی الکتریکی تبدیل می‌کنند. تأمین کننده انرژی جنبشی ژنراتورها، توربین‌ها هستند توربینها انواع مختلف دارند در نیروگاههای بخاری توربینهایی وجود دارند که بخار با فشار و دمای بسیار بالا وارد آنها شده و موجب به گردش در آمدن پره‌های توربین میگردد. در نیروگاه‌های آبی که روی سدها نصب می‌شوند انرژی پتانسیل موجود در آب موجب به گردش در آمدن پره‌های توربین می‌شود.

بدین ترتیب می‌توان گفت در نیروگاههای آبی انرژی پتانسیل آب به انرژی جنبشی و سپس به الکتریکی تبدیل می‌شود، در نیروگاههای حرارتی بر اثر سوختن سوختهای فسیلی مانند مازوت، آب موجود در سیستم بسته نیروگاه داخل دیگ بخار (بویلر) به بخار تبدیل می‌شود و بدین ترتیب انرژی حرارتی به جنبشی و سپس به الکتریکی تبدیل می‌شود در نیروگاههای گازی توربینهایی وجود دارد که بطور مستقیم بر اثر سوختن گاز به حرکت درآمده و ژنراتور را می‌گرداند و انرژی حرارتی به جنبشی و سپس به الکتریکی تبدیل می‌شود. و اما در نیروگاههای حرارتی خورشیدی وظیفه اصلی بخش‌های خورشیدی تولید بخار مورد نیاز برای تغذیه توربینها است یا به عبارت دیگر می‌توان گفت که این نوع نیروگاهها شامل دو قسمت هستند:
• سیستم خورشیدی که پرتوهای خورشید را جذب کرده و با استفاده از حرارت جذب شده تولید بخار می‌نماید.

• سیستمی موسوم به سیستم سنتی که همانند دیگر نیروگاههای حرارتی بخار تولید شده را توسط توربین و ژنراتور به الکتریسیته تبدیل می‌کند.

نیروگاههای حرارتی از نوع دریافت کننده مرکزی
در این نیروگاه‌ها پرتوهای خورشیدی توسط مزرعه‌ای متشکل از تعداد زیادی آینه منعکس کننده بنام هلیوستات بر روی یک دریافت کننده که در بالای برج نسبتاً بلندی استقرار یافته‌است متمرکز می‌گردد. در نتیجه روی محل تمرکز پرتوها انرژی گرمایی زیادی بدست می‌آید که این انرژی بوسیله سیال عامل که داخل دریافت کننده در حرکت است، جذب می‌شود و بوسیله مبدل حرارتی به سیستم آب و بخار مرسوم در نیروگاه‌های سنتی منتقل شده و بخار فوق گرم در فشار و دمای طراحی شده برای استفاده در توربین ژنراتور تولید می‌گردد.

این سیال عامل در مبدلهای حرارتی در کنار آب قرار گرفته و موجب تبدیل آن به بخار با فشار و حرارت بالا میگردد. در برخی از سیستم‌ها سیال عامل آب است و مستقیماً در داخل دریافت کننده به بخار تبدیل می‌شود.

برای استفاده دائمی از این نوع نیروگاه‌ در زمانی که تابش خورشید وجود ندارد مثلاً ساعات ابری یا شبها از سیستم‌های ذخیره کننده حرارت و یا احیاناً از تجهیزات پشتیبانی که ممکن است از سوخت فسیلی استفاده کنند جهت ایجاد بخار برای تولید برق کمک گرفته می‌شود.
مطالعات و تحقیقات در زمینه فناوری و سیستمهای این نیروگاه‌ها ادامه دارد و آزمایشگاهها و مؤسسات متعددی در سراسر دنیا در این زمینه فعالیت می‌کنند.
مطالعات ساخت اولین نیروگاه خورشیدی ایران از نوع دریافت کننده مرکزی توسط سازمان انرژیهای نو ایران و با کمک شرکتهای مشاور و سازنده داخلی با ظرفیت یک مگاوات و سیال عامل آب و بخار در طالقان جریان دارد. کلیه مطالعات اولیه و پتانسیل سنجی و طراحی نیروگاه به انجام رسیده و یک نمونه هلیوستات نیز ساخته شده‌است.
نیروگاه‌های حرارتی از نوع شلجمی بشقابی
در این نیروگاهها از منعکس کننده‌هایی که به صورت شلجمی بشقابی می‌باشد جهت تمرکز نقطه‌ای پرتوهای خورشیدی استفاده می‌گردد و گیرنده‌هایی که در کانون شلجمی قرار میگیرند به کمک سیال جاری در آن انرژی گرمایی را جذب نموده و به کمک یک ماشین حرارتی و ژنراتور آن را به نوع مکانیکی و الکتریکی تبدیل می‌نماید.
دودکش‌های خورشیدی
روش دیگر برای تولید الکتریسیته از انرژی خورشید استفاده از برج نیرو یا دودکش‌های خورشیدی میباشد در این سیستم از خاصیت دودکش‌ها استفاده می‌شود به این صورت که با استفاده از یک برج بلند به ارتفاع حدود ۲۰۰ متر و تعداد زیادی گرم خانه‌های خورشیدی که در اطراف آن است هوای گرمی که بوسیله انرژی خورشیدی در یک گرمخانه تولید می‌شود و به طرف دودکش یا برج که در مرکز گلخانه‌ها قرار دارد، هدایت می‌شود.

این هوای گرم بعلت ارتفاع زیاد برج با سرعت زیاد صعود کرده و با عث چرخیدن پروانه و ژنراتوری که در پایین برج نصب شده‌است می‌گردد و بوسیله این ژنراتور برق تولید می‌شود هم اکنون یک نمونه از این سیستم در ۱۶۰ کیلومتری جنوب مادرید احداث گردیده که ارتفاع برج آن به ۲۰۰ متر می‌رسد.

مزایای نیروگاههای خورشیدی
نیروگاه‌های خورشیدی که انرژی خورشید را به برق تبدیل می‌کنند امید است در آینده با مزایای قاطعی که در برابر نیروگاه‌های فسیلی و اتمی دارند به خصوص اینکه سازگار با محیط زیست می‌باشند، مشکل برق بخصوص در دوران انجام ذخائر نفت و گاز را حل نمایند. تأسیس و بکارگیری نیروگاه‌های خورشیدی آینده‌ای پر ثمر و زمینه‌ای گسترده را برای کمک به خودکفایی و قطع وابستگی کشور به صادرات نفت فراهم خواهد کرد. اکنون شایسته‌است که به ذکر چند مورد از مزایای این نیروگاه‌ها بپردازیم.

الف) تولید برق بدون مصرف سوخت
نیروگاه‌های خورشیدی نیاز به سوخت ندارند و برخلاف نیروگاه‌های فسیلی که قیمت برق تولیدی آنها تابع قیمت نفت بوده و همیشه در حال تغییر می‌باشد. در نیروگاه‌های خورشیدی این نوسان وجود نداشته و می‌توان بهای برق مصرفی را برای مدت طولانی ثابت نگهداشت.

ب) عدم احتیاج به آب زیاد
نیروگاه‌های خورشیدی بخصوص دودکشهای خورشیدی با هوای گرم احتیاج به آب ندارند لذا برای مناطق خشک مثل ایران بسیار حائز اهمیت می‌باشند. (نیروگاه‌های حرارتی سنتی هنگام فعالیت نیاز به آب مصرفی زیادی دارند).
پ) عدم آلودگی محیط زیست
نیروگاه‌های خورشیدی ضمن تولید برق هیچگونه آلودگی در هوا نداشته و مواد سمّی و مضر تولید نمی‌کنند در صورتی که نیروگاه‌های فسیلی هوا و محیط اطراف خود را با مصرف نفت – گاز و یا ذغال سنگ آلوده کرده و نیروگاه‌های اتمی با تولید زباله‌های هسته‌ای خود که بسیار خطرناک و رادیواکتیو هستند محیط زندگی را آلوده و مشکلات عظیمی را برای ساکنین کره زمین بوجود می‌آورند.
ت) امکان تأمین شبکه‌های کوچک و ناحیه‌ای
نیروگاه‌های خورشیدی می‌توانند با تولید برق به شبکه سراسری برق نیرو برسانند و در عین امکان تأمین شبکه‌های کوچک ناحیه‌ای، احتیاج به تأسیس خطوط فشار قوی طولانی جهت انتقال برق ندارند و نیاز به هزینه زیاد احداث شبکه‌های انتقال نمی‌باشد.
ث) استهلاک کم و عمر زیاد
نیروگاه‌های خورشیدی بدلایل فنی و نداشتن استهلاک زیاد دارای عمر طولانی می‌باشند در حالی که عمر نیروگاه‌های فسیلی بین ۱۵ تا ۳۰ سال محاسبه شده‌است.
ج) عدم احتیاج به متخصص
نیروگاه‌های خورشیدی احتیاج به متخصص عالی ندارند و میتوان آنها را بطور اتوماتیک بکار انداخت، در صورتی که در نیروگاه‌های اتمی وجود متخصصین در سطح عالی ضروری بوده و این دستگاهها احتیاج به مراقبتهای دائمی و ویژه دارند.
کاربردهای غیر نیروگاهی
کابردهای غیر نیروگاهی از انرژی حرارتی خورشید شامل موارد متعددی می‌باشد که اهم آنها عبارت‌اند از: آبگرمکن و حمام خورشیدی – سرمایش و گرمایش خورشیدی – آب شیرین کن خورشیدی – خشک کن خورشیدی – اجاق خورشیدی – کوره‌های خورشیدی و خانه‌های خورشیدی.
الف – آبگرمکن‌های خورشیدی و حمام خورشیدی

تولید آب گرم مصرفی ساختمانها اقتصادی‌ترین روشهای استفاده از انرژی خورشیدی است می‌توان از انرژی حرارتی خورشید جهت تهیه آب گرم بهداشتی در منازل و اماکن عمومی به خصوص در مکانهایی که مشکل سوخت رسانی وجود دارد استفاده کرد. چنانچه ظرفیت این سیستمها افزایش یابد می‌توان از آنها در حمامهای خورشیدی نیز استفاده نمود. تاکنون با توجه به موقعیت جغرافیایی ایران تعداد زیادی آب گرمکن خورشیدی و چندین دستگاه حمام خورشیدی در نقاط مختلف کشور از جمله استان‌های خراسان – سیستان و بلوچستان و یزد نصب و راه اندازی شده‌است.
ب – گرمایش و سرمایش ساختمان و تهویه مطبوع خورشیدی

خانه خورشیدی شماره ۱ MIT، ساخته شده در سال ۱۹۳۹، که در آن از مخزن گرمای فصلی برای بکارگیری گرمای آن در طول سال استفاده شده است.

گرمایش و سرمایش ساختمانها با استفاده از انرژی خورشید، ایده تازه‌ای بود که در سالهای ۱۹۳۰ مطرح شد و در کمتر از یک دهه به پیشرفتهای قابل توجهی رسید. با افزودن سیستمی معروف به سیستم تبرید جذبی به سیستم‌های خورشیدی می‌توان علاوه بر آب گرم مصرفی و گرمایش از این سیستم‌ها در فصول گرما برای سرمایش ساختمان نیز استفاده کرد.
پ – آب شیرین کن خورشیدی

هنگامی که حرارت دریافت شده از خورشید با درجه حرارت کم روی آب شور اثر کند تنها آب تبخیر شده و املاح باقی می‌ماند.

سپس با استفاده از روشهای مختلف می‌توان آب تبخیر شده را تنظیم کرده و به این ترتیب آب شیرین تهیه کرد. با این روش می‌توان آب بهداشتی مورد نیاز در نقاطی که دسترسی به آب شیرین ندارند مانند جزایر را تأمین کرد.
آب شیرین خورشیدی در دو اندازه خانگی و صنعتی ساخته می‌شوند. در نوع صنعتی با حجم بالا می‌توان برای استفاده شهرها آب شیرین تولید کرد.

ت – خشک کن خورشیدی
خشک کردن مواد غذایی برای نگهداری آنها از زمانهای بسیار قدیم مرسوم بوده و انسان‌های نخستین خشک کردن را یک هنر می‌دانستند.
خشک کردن عبارت است از گرفتن قسمتی از آب موجود در مواد غذایی و سایر محصولات که باعث افزایش عمر انباری محصول و جلوگیری از رشد باکتریها می‌باشد. در خشک کن‌های خورشیدی بطور مستقیم و یا غیر مستقیم از انرژی خورشیدی جهت خشک نمودن مواد استفاده می‌شود و هوا نیز به صورت طبیعی یا اجباری جریان یافته و باعث تسریع عمل خشک شدن محصول می‌گردد. خشک کن‌های خورشیدی در اندازه‌ها و طرحهای مختلف و برای محصولات و مصارف گوناگون طراحی و ساخته می‌شوند.
ث – اجاقهای خورشیدی
دستگاههای خوراک پز خورشیدی اولین بار بوسیله شخصی بنام نیکلاس ساخته شد. اجاق او شامل یک جعبه عایق بندی شده با صفحه سیاهرنگی بود که قطعات شیشه‌ای درپوش آنرا تشکیل می‌داد اشعه خورشید با عبور از میان این شیشه‌ها وارد جعبه شده و بوسیله سطح سیاه جذب می‌شد سپس درجه حرارت داخل جعبه را به ۸۸ درجه افزایش می‌داد. اصول کار اجاق خورشیدی جمع آوری پرتوهای مستقیم خورشید در یک نقطه کانونی و افزایش دما در آن نقطه می‌باشد. امروزه طرحهای متنوعی از این سیستم‌ها وجود دارد که این طرحها در مکانهای مختلفی از جمله آفریقای جنوبی آزمایش شده و به نتایج خوبی نیز رسیده‌اند. استفاده از این اجاقها به ویژه در مناطق شرقی کشور ایران که با مشکل کمبود سوخت مواجه می‌باشند بسیار مفید خواهد بود.
ج – کوره خورشیدی
در قرن هجدهم نوتورا اولین کوره خورشیدی را در فرانسه ساخت و بوسیله آن یک تل چوبی را در فاصله ۶۰ متری آتش زد.
بسمر پدر فولاد جهان نیز حرارت مورد نیاز کوره خود را از انرژی خورشیدی تأمین می‌کرد. متداولترین سیستم یک کوره خورشیدی متشکل از دو آینه یکی تخت و دیگری کروی می‌باشد. نور خورشید به آینه تخت رسیده و توسط این آینه به آینه کروی بازتابیده می‌شود. طبق قوانین اپتیک هر گاه دسته پرتوی موازی محور آینه با آن برخورد نماید در محل کانون متمرکز می‌شوند به این ترتیب انرژی حرارتی گسترده خورشید در یک نقطه جمع می‌شود که این نقطه به دماهای بالایی می‌رسد. امروزه پروژه‌های متعددی در زمینه کوره‌های خورشید در سراسر جهان در حال طراحی و اجراء می‌باشد.
چ – خانه‌های خورشیدی

ایرانیان باستان از انرژی خورشیدی برای کاهش مصرف چوب در گرم کردن خانه‌های خود در زمستان استفاده می‌کردند. آنان ساختمانها را به ترتیبی بنا می‌کردند که در زمستان نور خورشید به داخل اتاقهای نشیمن می‌تابید ولی در روزهای گرم تابستان فضای اتاق در سایه قرار داشت. در اغلب فرهنگ‌های دیگر دنیا نیز می‌توان نمونه‌هایی از این قبیل طرحها را مشاهده نمود. در سالهای بین دو جنگ جهانی در اروپا و ایالات متحده طرحهای فراوانی در زمینه خانه‌های خورشیدی مطرح و آزمایش شد. از آن زمان به بعد تحول خاصی در این زمینه صورت نگرفت. حدود چند سالی است که معماران بطور جدی ساخت خانه‌های خورشیدی را آغاز کرده‌اند و به دنبال تحول و پیشرفت این تکنولوژی به نتایج مفیدی نیز دست یافته‌اند مثلاً در ایالات متحده در سال ۱۸۹۰ به تنهایی حدود ۱۰ تا ۲۰ هزار خانه خورشیدی ساخته شده‌است. در این گونه خانه‌ها سعی می‌شود از انرژی خورشید برای روشنایی – تهیه آب گرم بهداشتی – سرمایش و گرمایش ساختمان استفاده شود و با بکار بردن مصالح ساختمانی مفید از اتلاف گرما و انرژی جلوگیری شود.

در ایران نیز پروژه ساخت اولین ساختمان خورشیدی واقع در ضلع شمالی دانشگاه علم و صنعت و به منظور مطالعه و پژوهش در خصوص بهینه سازی مصرف انرژی و امکان بررسی روشهای استفاده از انواع انرژیهای تجدیدپذیر به ویژه انرژی خورشیدی اجرا گردیده‌است.

سیستمهای فتوولتائیک
به پدیده‌ای که در اثر تابش نور بدون استفاه از مکانیزم‌های محرک، الکتریسیته تولید کند پدیده فتوولتائیک و به هر سیستمی که از این پدیده‌ها استفاده کند سیستم فتوولتائیک گویند. سیستم‌های فتوولتائیک یکی از پر مصرف‌ترین کاربرد انرژی‌های نو می‌باشند و تاکنون سیستم‌های گوناگونی با ظرفیت‌های مختلف (۵/۰ وات تا چند مگاوات) در سراسر جهان نصب و راه اندازی شده‌است و با توجه به قابلیت اطمینان و عملکرد این سیستم‌ها هر روزه بر تعداد متقاضیان آنها افزوده می‌شود. از سری و موازی کردن سلولهای آفتابی می‌توان به جریان و ولتاژ قابل قبولی دست یافت. در نتیجه به یک مجموعه از سلولهای سری و موازی شده پنل (Panel) فتوولتائیک می‌گویند. امروزه اینگونه سلولها عموماً از ماده سیلیسیم تهیه می‌شود و سیلیسیم مورد نیاز از شن و ماسه تهیه می‌شود که در مناطق کویری کشور، به فراوانی یافت می‌گردد. بنابراین از نظر تأمین ماده اولیه این سلولها هیچگونه کمبودی در ایران وجود ندارد. سیستمهای فتوولتائیک را می‌توان بطور کلی به سه بخش اصلی تقسیم نمود که بطور خلاصه به توضیح آنها می‌پردازیم.

 

۱ – پنلهای خورشیدی:
این بخش در واقع مبدل انرژی تابشی خورشید به انرژی الکتریکی بدون واسطه مکانیکی می‌باشد. لازم به ذکر است، جریان و ولتاژ خروجی از این پنلها DC (مستقیم) می‌باشد.
۲ – تولید توان مطلوب یا بخش کنترل:
این بخش در واقع کلیه مشخصات سیستم را کنترل کرده وتوان ورودی پنلها را طبق طراحی انجام شده و نیاز مصرف کننده به بار یا باتری تزریق و کنترل می‌کند لازم به ذکر است که در این بخش مشخصات و عناصر تشکیل دهنده با توجه به نیازهای بار الکتریکی و مصرف کننده و نیز شرایط آب و هوایی محلی تغییر می‌کند.
۳ – مصرف کننده یا بار الکتریکی:
با توجه به خروجی DC پنلهای فتوولتائیک، مصرف کننده می‌تواند دو نوع DC یا AC باشد، همچنین با آرایشهای مختلف پنلهای فتوولتائیک می‌توان نیاز مصرف کنندگان مختلف را با توانهای متفاوت تأمین نمود. با توجه به کاهش روز افزون ذخائر سوخت فسیلی و خطرات ناشی از بکارگیری نیروگاههای اتمی، گمان قوی وجود دارد که در آینده‌ای نه چندان دور سلولهای خورشیدی به انرژی برق به‌عنوان جایگزین مناسب و بی خطر برای سوختهای فسیلی و نیروگاههای اتمی توسط بشر بکار گرفته شود.
مصارف و کاربردهای فتوولتائیک
• مصارف فضانوردی و تأمین انرژی مورد نیاز ماهواره‌ها جهت ارسال پیام
• روشنایی خورشیدی:

در حال حاضر روشنایی خورشیدی بالاترین میزان کاربرد سیستم‌های فتوولتائیک را در سراسر جهان دارد و سالانه دهها هزار نمونه از این سیستم در سراسر جهان نصب و راه اندازی می‌گردد، مانند برق جاده‌ها و تونلها بخصوص در مناطقی که به شبکه برق دسترسی ندارند، تأمین برق پاسگاههای مرزی که دور از شبکه برق هستند، تأمین برق مناطقی شکاربانی و مناطق حفاظت شده نظیر جزیره‌های دور افتاده که جنبه نظامی دارند.

• سیستم تغذیه کننده یک واحد مسکونی:
انرژی مورد نیاز کلیه لوازم برقی منازل (شهری و روستایی) و مراکز تجاری را می‌توان با استفاده از پنلهای فتوولتائیک و سیستمهای ذخیره کننده و کنترل نسبتاً ساده، تأمین نمود.
• سیستم پمپاژ خورشیدی:

سیستم پمپهای فتوولتائیک قابلیت استحصال آب از چاهها، قنوات، چشمه‌ها، رودخانه‌ها و ….. را جهت مصارف متنوعی دارا می‌باشد.
• سیستم تغذیه کننده ایستگاههای مخابراتی و زلزله نگاری:
اغلب ایستگاههای مخابراتی و یا زلزله نگاری در مکانهای فاقد شبکه سراسری و صعب العبور و یا در محلی که احداث پست فشار قوی به فشار ضعیف و تأمین توان الکتریکی ایستگاه مذکور صرفه اقتصادی و حفاظت الکتریکی ندارد نصب شده‌اند.
• ماشین حساب، ساعت، رادیو، ضبط صوت و وسایل بازی کودکانه یا هر نوع وسیله‌ای که تاکنون با باطری خشک کار می‌کرده‌است یکی دیگر از کاربردهای این سیستم می‌باشد.
مثلاً ژاپن در سال ۱۹۸۳ حدود ۳۰ میلیون ماشین حساب خورشیدی تولید کرده‌است که سلولهای خورشیدی بکار گرفته در آنها مساحتی حدود ۰۰۰/۲۰ متر مربع و توان الکتریکی معادل ۵۰۰ کیلووات داشته‌اند.
• نیروگاههای فتوولتائیک:
هم‌زمان با استفاده از سیستم‌های فتوولتائیک در بخش انرژی الکتریکی مورد نیاز ساختمانها اطلاعات و تجربیات کافی جهت احداث واحدهای بزرگ‌تر حاصل گردید و همه اکنون در بسیاری از کشورهای جهان نیروگاه فتوولتائیک در واحدهای کوچک و بزرگ و به صورت اتصال به شبکه و یا مستقل از شبکه نصب و راه اندازی شده‌است ولی این تأسیسات دارای هزینه ساخت، راه اندازی و نگهداری بالایی می‌باشند که فعلاً مقرون به صرفه و اقتصادی نیست.
• یخچالهای خورشیدی:
از یخچالهای خورشیدی جهت سرویس دهی و ارائه خدمات بهداشتی و تغذیه‌ای در مناطق دور افتاده و صعب العبور استفاده می‌گردد. عملکرد مناسب یخچالهای خورشیدی تا حدی بوده‌است که در طی ۵ سال گذشته بیش از ۱۰۰۰۰ یخچال خورشیدی برای کاربردهای بهداشتی و درمانی در سراسر آفریقا راه اندازی شده‌است.
• سیستم تغذیه کننده پرتابل یا قابل حمل:

قابلیت حمل و نقل و سهولت در نصب و راه اندازی از جمله مزایای این سیستم‌ها می‌باشد بازده توان این سیستم‌ها از ۱۰۰ وات الی یک کیلو وات تعریف شده‌است. از جمله کاربردهای آن می‌توان به تأمین برق اضطراری در مواقع بروز حوادث غیر مترقبه، سیستم تغذیه کننده یک چادر عشایری و کمپ‌های جنگلی اشاره نمود.