تبادلگر یونی

نگاه کلی
روشهای تبادل یونی ، براساس تبادل برگشت پذیر یونها بین محلول و یک فاز جامد استوار است. فاز جامد در آب ، غیر محلول بوده ، دارای گروههایی به‌صورت بنیان اسیدی یا بازی است. این بنیانها ، عوامل اصلی تبادل یون هستند. اجزا تشکیل دهنده فاز جامد ، ممکن است از ترکیبات معدنی شبیه زئولیتها باشند که اسکلت آنها از آلومینو سیلیکاتها تشکیل شده‌اند.

این ترکیبات چون در مقابل اسیدها و بازها مقاومت چندانی ندارند، کمتر مورد استفاده قرار می‌گیرند. ترکیبات معدنی جدید از مشتقات ZrO2 ساخته شده‌‌اند که زیرکونیوم فسفات ، زیرکونیوم تنگستات و زیرکونیوم مولیبدات از آن جمله هستند. برای جداسازی فلزات قلیایی و قلیایی خاکی از هم مفید هستند.

رزینهای تبادلگر یونی
رزین تبادلگر یونی ، منشاء آلی دارند و از پلیمرهای با وزن ملکولی زیاد تشکیل شده‌اند. تشکیل این رزین‌ها بر اساس پلیمریزاسیون پلی‌استایرن و دی‌وینیل بنزن پایه‌گذاری شده است که همراه با ترکیبات دیگر نظیر تری‌کلرو آنیلین یا اسید سولفوریک ترکیب تبادلگر یونی آنیونی و کاتیونی را می‌دهد. افزایش پیوندهای عرضی ، خصوصیات رزین را از نظر آبگیری و نفوذ یونها تغییر می‌دهد.
تقسیم بندی رزینها
تبادلگرهای یونی شامل دو گروه آنیونی و کاتیونی هستند. تبادلگرهای کاتیون شامل گروههای RCOOH یا R-SO3H هستند. تبادلگرهای یونی را می‌توان برحسب قدرت تبادلی و فعالیت گروههای فعالشان به دو دسته تقسیم می‌کنند.

تبادلگر بازی
• تبادلگر بازی قوی با فرمول عمومی +(CH3)2Cl- RCH3N
• تبادلگر بازی ضعیف با فرمول عمومی R-CH3NH3OH
تبادلگر اسیدی
• تبادلگر اسیدی قوی به صورت R-SO3H
• تبادلگر اسیدی ضعیف به صورت R-COOH

ستون تبادل یونی
آزمایشهای تبادل یون را می‌توان به‌صورت ناپیوسته یعنی عبور مقدار معینی محلول از ستون حاوی رزین یا به‌صورت جریان پیوسته محلول از بالا به پائین ستون انجام داد. ستون همیشه باید از آب مقطر پر باشد و حبابهای هوا در قسمت رزین وجود نداشته باشد. دانه‌های رزین ، آب را جذب کرده ، متورم می‌شوند.
اگر منظور ، جدا کردن و بدست آوردن یونهای موجود در یک محلول باشد، پس از عبور نمونه از ستون توسط جریان مداومی از محلول شستشو دهنده ، اجزای موردنظر از ستون خارج می‌شوند. بعد از خاتمه آزمایش باید ستون را با آب مقطر پر کرد. محلولی که وارد ستون می‌شود، جریان ورودی و محلولی که از ستون خارج می‌شود جریان خروجی نام دارد.
تعادل تبادل یونی
برای روشنتر شدن واکنشهای تبادل یونی رزینهای اسیدی و بازی را به‌صورت RH و ROH نشان می‌دهیم. طبق واکنشهای زیر:

R-H + NaCl —–> R-Na + HCl

R-OH + HCl —–> R-Cl + H2O

یونهای سدیم و کلرید با یونهای هیدروژن و یون هیدروکسیل تبادل می‌شوند. در صورتی که رزین تبادلگر یونی به‌صورت R-Na با محلول کلرید سدیم در تعادل باشد، می‌توان گفت که حاصلضرب فعالیت یونهای سدیم و کلرید در سطح رزین و محلول نمک در حال تعادل با رزین برابر است. این مفهوم از تعادل دانن نتیجه می‌شود.
ظرفیت تبادل یونی
ظرفیت تبادل یون ، عبارت است از وزن یونهایی که در واحد حجم یا واحد وزن رزین قابل تعویض است. بنابرین هر رزین ، دارای ظرفیت حجمی یا ظرفیت وزنی است. ظرفیت حجمی براساس حجم رزین آب گرفته تعیین می‌شود.

ضریب توزیع
نسبت یونها در هر گرم رزین خشک بر مقدار آنها در هر میلی لیتر محلول را ضریب توزیع می‌گویند.
برای تبادل کننده‌های یونی ، یونهای با بار مخالف ، ضریب توزیع به غلظت محلول خارجی بستگی دارد. مثلا هنگامی که رزین اشباع شده با کلسیم با محلول کلرید سدیم تماس داده شود، ازدیاد غلظت نمک ، سبب تعویض سدیم با کلسیم می‌گردد. ولی هنگامی که رزین ، یونهای کلسیم را دریافت می‌کند، نیروهای جذبی نقش اساسی دارند.
کاربرد رزینها
در صنعت برای گرفتن یا کاهش سختی آب و یون زدایی آن ، از تبادلگرهای یونی استفاده می‌شود. آب یون زدایی شده ، فاقد ناخالصی‌های دی‌اکسید کربن و سیلیس است و در آب مقطر وجود دارد. یکی دیگر از کاربردهای تبادلگرهای یونی رزینی ، شیرین کردن آب دریا با جداسازی نمکهای سدیم و پتاسیم و منیزیم ، بوسیله رزین‌ها می‌باشد و برای جدا کردن یونهای فلزی به‌صورت ترکیبات آنیونی هم از رزین‌ها استفاده می‌شود. یک مورد دیگر ، تعیین غلظت کل نمکهای محلول در آب است.
احیاء رزین
پس از مدتی ، ظرفیت رزینها از نظر تبادل یونی تکمیل می‌شود. در نتیجه ، باید تبادلگرهای کاتیونی و آنیونی را با افزایش اسید یا باز رقیق فعال کرد. این عمل را احیا یا بازسازی می‌نامند. در کارخانه‌هایی که فقط از زئولیت استفاده می‌شود، فعال کردن و بازسازی آن با افزایش محلول ده درصد کلرید سدیم انجام می‌شود.

رزین
منابع طبیعی رزینها ، حیوانات ، گیاهان و مواد معدنی می‌باشد. این پلیمرها به سادگی شکل پذیر بوده لیکن دوام کمی دارند. رایج عبارتند از روزین ، آسفالت ، تار ، کمربا ، سندروس ، لیگنپین ، لاک شیشه‌ای می‌باشند. رزین‌های طبیعی اصلاح شده شامل سلولز و پروتئین می‌باشد سلولز قسمت اصلی گیاهان بوده و به عنوان ماده اولیه قابل دسترسی برای تولید پلاستیکها می‌باشد کازئین ساخته شده از شیر سرشیر گرفته ، تنها پلاستیک مشتق شده از پروتئین است که در عرصه تجارت نسبتا موفق است.
رزین ها :
معمولا به ترکیب ماکرو مولکولی گفته می شود که در دمای معمولی با حرارت های بالا تر به صورت مایع یا سیال وجود دارد و می توان آن ها را در حلال های مناسب حل کرد وبر اثر گرما با کاتالیست یا مواد دیگر واکنش پذیرد و آن را به ماکرومولکول غیر محلول وجامد تبدیل کرد . رزین ها انواع مختلفی دارد و برای هر رنگ از رزین های خاص استفاده می شود مانند رزین های :
آلکید – آمینو پلاست –فنلی – اپوکسی – هیدرو کربونی – آکریلیکی – پنلیکی – پلی اورتان و …
برای هر رنگ از رزین های خاصی استفاده می شود شامل :
انواع رزین های آلکید (شاملرزین آلکید کوتاه – متوسط – بلند و رزین آلکید محلول در آب رزین آلکید تغییر یافته با رزین فنولیک – رزین آلکید تغییر یافته با اوره وملامین ) .رزین آلکید در واقع پلی استرهای اشباع شده ای هستند که جزء اسید استریک – اسید دو ظرفیتی (معمولا اسیدفتالیک ) وجزء الکلی آن مثل گلیسرین وپنتا اریترول ومانند آن ها است و نیز بعلت خیس کردن رنگدانه وقابلیت تعلیق آن برای رنگدانه مقاومت نسبتا خوبی دارد ودرهر رزین بسته به شرایط عمل پلیمریزاسیون و ترکیب استفاده شده در رنگ های ساختمانی – صنعتی و دریایی استفاده می شود .
رزین‌های مبادله کننده یون
مقدمه
پدیده تبادل یون برای اولین بار در سال ۱۸۵۰ و به دنبال مشاهده توانایی خاک‌های زراعی در تعویض برخی از یون‌ها مثل آمونیوم با یون کلسیم و منیزم موجود در ساختمان آنها گزارش شد. در سال ۱۸۷۰ با انجام آزمایش‌های متعددی ثابت شد که بعضی از کانیهای طبیعی بخصوص زئولیت‌ها واجد توانایی انجام تبادل یون هستند. در واقع به رزین‌های معدنی ، زئولیت می‌گویند و این مواد یون‌های سختی آور آب (کلسیم و منیزیم) را حذف می‌کردند و به جای آن یون سدیم آزاد می‌کردند از اینرو به زئولیت‌های سدیمی مشهور شدند که استفاده از آن در تصفیه آب مزایای زیاد داشت چون احتیاج به مواد شیمیایی نبود و اثرات جانبی هم نداشتند.

اما زئولیت‌های سدیمی دارای محدودیتهایی بودند. این زئولیتها می‌توانستند فقط سدیم را جایگزین کلسیم و منیزیم محلول در آب نمایند و آنیونهایی از قبیل سولفات ، کلراید و سیلیکات‌ها بدون تغییر باقی می‌مانند. واضح است چنین آبی برای صنایع مطلوب نیست. پس از انجام تحقیقات در اواسط دهه ۱۹۳۰ در هلند زئولیتهایی ساخته شد که به جای سدیم فعال ، هیدروژن فعال داشتند. این زئولیتها که به تعویض کننده‌های کاتیونی هیدروژنی معروف جدید ، سیلیس نداشته و علاوه بر این قادرند همزامان هم سختی آب را حذف کنند و هم قلیائیست آب را کاهش دهند.