موج صوتی

صوت ریشه در کلمه یونانی فون به معنی ارتعاش دارد .
تئوری و نحوه تولید :
وقتی کسی صحبت می کند هوای داخل ششها از میان دو پرده نازک در نای به تمام تارهای صوتی عبور می کند این دو پرده نازک که مرتعش شده و هوا را جبهه جبهه ( کپه کپه )‌به بیرون می فرستد. در هر ثانیه صدها و گاهی اوقات هزاران جبهه هوا ساخته می شود بطوریکه هوا بین گلو و دهان با مکانیزم لوله ها ی صوتی مرتعش می شود این ارتعش تحت تاثیر چگونگی قرار گرفتن زبان ـ دندانها ـ لب و سایر عوامل قرارمی گیرد .این هوای مرتعش باعث تغییرات جزئی در اطراف شخص صحبت کننده می شود که به آن صوت می گوییم .

آزمایش ساده :
یک پر خیلی کوچک را با نخ ابریشمی آویزان کنید و در مقابل دهان خود قراردهید دقت کنید که در موقع صحبت چگونه پر هماهنگ با کلمات مخصوصاً برای کلماتی با تغییرات آوایی بیشتر مانند ‹‹پوپک›› حرکت می کنند .
البته برای تغییرات فشاری بزرک حرکت می کند اغلب تغییرات چنان سریع و پیچیده هستند که پر نمی تواند هماهنگ با آن حرکت نماید .
تعمیم پدیده :
بهترین روش نمایش ارتعاشات با تغییرات سریع استفاده از دستگاه ‹‹ نوسان نما ›› یا اسیلوسکوپ که شبیه یک تلویزیون هست ، می باشد .
آناتومی گوش :

در داخل گوش انسان پرده گوش قراردارد که شبیه یک پوسته پهن در سطح گوش هست این پرده هماهنگ با تغییرات سریع فشار داخل هوا که صوت نام دارد نوسان می کند و یک اندام پیچیده شنوایی در پشت پرده گوشی پیام را به مغز می رساند . و در آنجا تغییر فشار به توسط پرده گوش با انتقال به مغز و تبدیل آن به پالس های الکتریکی در مغز مورد ترجمه و استفاده قرارمی گیرد .
دید کلی
آیا آزمایشهای مربوط به هوا صوت را منتقل می‌کند؟
صوت در آزمایشهای مربوط به هوا با چه سرعتی منتقل می‌شود؟
آیا صوت فقط در محیط آزمایشهای مربوط به هوا می‌تواند منتشر شود؟
از مشاهداتی که در زمانهای قدیم انجام شده و بدست ما رسیده معلوم می‌شود، این مطلب که: «صوت بوسیله هوا از یک نقطه به نقطه دیگر منتقل می‌گردد»، مورد قبول عموم بوده است. در حقیقت ارسطو اصرار ورزیده است به اینکه حرکت آزمایشهای مربوط به هوا در نقل انتقال صوت مؤثر است، ولی این موضوع مانند سایر مطالبی که در فیزیک بیان نموده با ابهام توأم می‌باشد.

سیر تحولی و رشد
نظر به اینکه در موقع انتقال صوت ، آزمایشهای مربوط به هوا حرکت نمی‌کند، تعجب آور نیست اگر بگوییم که فلاسفه دیگر معاصر ارسطو این عقیده او را تکذیب نمودند و به همین طریق در دوره گالیله ـ فیلسوف فرانسوی موسوم به کاساندی (۱۶۵۵ ـ ۱۵۹۲) جریانی از اجزاء کوچک غیر مرئی بسیار ریز می‌دانست که از جسم صدا دار برخاسته و پس از عبور آزمایشهای مربوط به هوا به گوش رسیده و آنرا متأثر می‌سازد.

اتوفن گریکه (۱۶۸۶ ـ ۱۶۰۲) موضوع اینکه انتقال صوت بواسطه حرکت آزمایشهای مربوط به هوا می‌باشد، با شک زیاد تلقی کرده و می‌گوید: “صدا در محیط آرام یعنی وقتی آزمایشهای مربوط به هوا بدون حرکت می‌باشد، بهتر انتقال پیدا می‌نماید.” به علاوه در اواسط قرن ۱۷ تجربه به صدا در آوردن زنگ در زیر سرپوش خالی از آزمایشهای مربوط به هوا را تکرار کرده و ادعا نمود که با وجود این صدای زنگ را می‌شنود.
دانشمندان انتشار صوت در جامدات و شاره‌ها را بررسی کرده و به نتایجی بهتر رسیده‌اند که کاربردهای آن را در علوم و فنون بیان کرده و امروزه نسبت به کشفیات خود در مورد کاربردی کردن انتشار صوت در کارهای نظامی و غیر نظامی می‌پردازند. البته این موضوع با علم جدید ژئوفیزیک (امواج زلزله Seismological wave) آشکار می‌شود.

انتشار صوت در خلا
صدا در محیط آرام یعنی وقتی محیط بدون حرکت می‌باشد، بهتر انتقال پیدا می‌کند. در سال ۱۶۶۰ رابرت بویل در انگلستان تجربه به صدا درآوردن زنگ زیر سرپوش را مجددا با احتیاط کامل و بـا تـلمبه تخلیه‌ قویتر به عمل آورد و آنچه را که امروز مسلم و معلوم است، (یعنی اینکه شدت صوت زنگ به نسبت عکس غلظت هوای درون سرپوش کم می‌شود) روشن و واضح ساخت. او بطور قطع و مسلم گفت که آزمایشهای مربوط به هوا محیطی است که صوت را انتقال می‌دهد و این خاصیت هم منحصر به آزمایشهای مربوط به هوا نمی‌باشد.

 

سرعت انتشار صوت

در سال ۱۶۳۵ گاساندی در پاریس سرعت صوت را اندازه گرفت و برای اینکار از اسلحه‌های باروتی استفاده نموده ، سرعت مسیر برق انفجار را مساوی بینهایت فرض کرد. عددی که برای سرعت صوت پیدا کرد ۱۶۷۳ فوت پاریسی در ثانیه بود. فوت پاریسی تقریبا معادل با ۳۲٫۴۸۲ سانتیمتر بوده است.
سرعت انتشار صوت در آزمایشهای مربوط به هوا
ظاهرا اولین تجربه اندازه گیری سرعت صوت در هوای آزاد که شامل دقتهای لازم علمی و جدید بود زیر نظر آکادمی علوم پاریس در سال ۱۷۳۸ انجام شده و در آن تجربه توپ بکار رفته است. از اعدادی که در این تجربه بدست آمده سرعت صوت در صفر درجه سانتیگراد برابر ۳۳۲ متر بر ثانیه می‌گردد. تجربه‌های مکرر دقیقی که در بقیه قرن هجدهم و در نیمه اول قرن نوزدهم از این اندازه‌ گیری به عمل آمد، نتایجی داد که با نتیجه فوق در حدود متر بر ثانیه اختلاف داشت. بهترین و جدیدترین عددی که برای سرعت صوت در هوای آرام و در تحت شرایط معمولی (صفر درجه سانتیگراد و فشار ۷۶ |سانتیمتر جیوه) بدست آمده ۳۳۱ + ۰٫۰۸ می‌باشد.

سرعت انتشار صوت در جامدات
درسال ۱۸۰۸ فیزیکدان فرانسوی بیو اولین تجربیات را برای اندازه‌ گیری سرعت صوت در جامدات به عمل آورد و برای اینکار از یک لوله طویل آهن به‌ طول تقریبا یکهزار متر که برای لوله‌کشی نصب کرده بودند، استفاده نمود. با مقایسه دو صدایی که از هر طریق ، هوای درون لوله و خود لوله آهنی می‌رسد، معلوم شد که سرعت انتشار موج متراکم درون آهن به مراتب بیشتر از سرعت صوت درون هواست.
سرعت انتشار صوت در مایعات
در سال ۱۸۲۶ میلادی کلادن و شتورن ریاضیدان ، انتقال صوت را در آب دریاچه ژنو واقع در سوئیس مطالعه نمودند و با استفاده از برق انفجار و صدایی که در زیر آب روانه می‌ساختند، عدد ۱۴۳۵ را برای سرعت انتشار صوت در آب در ۸ درجه سانتیگراد بدست آوردند.
انتشار امواج صوتی

اگر بطور همزمان در نقطه‌ای از محیط ، ارتعاشی ایجاد شود آن ارتعاش تدریجا با سرعت ثابت به‌ تمام اطراف آن نقطه انتقال پیدا می‌کند. در این حالت می‌گویند ارتعاش در محیط مذکور انتشار پیدا کرده است. اگر مسیر ارتعاش بر راستای انتشار عمود باشد، در این صورت موج را موج عرضی می‌گویند. اما اگر راستای انتشار و ارتعاش باهم موازی باشند، در این صورت موج را موج طولی می‌گویند. اما امواج صوتی جزء امواج طولی هستند.

 

پراش صوتي
بازتابش ، شكست و پراش فيزيك امواج صوتي عينا مانند بازتاب ، شكست و پراش نور صورت ميگيرد. زيرا آثار امواج نوري از بسياري جهات شباهت به آثار امواج صوتي دارند و تنها فرق موجود اين است كه طول موج فيزيك امواج نوراني نسبت به طول موج فيزيك امواج صوتي بسيار كوچك ميباشد. ولي قوانين هندسي آنها كاملا با هم شباهت دارد.

وقتي كه بين منبع صوت و گوش مانعي قرار دهيم بر حسب بزرگي و كوچكي مانع نسبت به طول موج ، ممكن است آثار مختلف پيدا شود. اگر فيزيك امواج صوتي به جدار محكمي كه در آن سوراخي تعبيه شده است برخورد كنند، قسمتي از فيزيك امواج كه به سطح ديواره برخورد ميكنند منعكس ميگردند و قسمت ديگر كه به لبه جداره و يا به لبه سوراخ برخورد ميكنند ممكن است پراشيده شوند.

مشاهده پديده تفرق در زندگي روزمره

پديده تفرق فيزيك امواج صوتي در مشاهدات روزانه ما زياد است. مثلا وقتي اشخاص در مقابل دهنه بوقي شكل بلندگو واقع ميشوند، آنهايي كه در وسط و در نزديكي محور قرار دارند، تمام صداها را ميشنوند، ولي آنهايي كه در اطراف محور و خارج از ميدان بوق شده‌اند فقط آن كلمات و با قسمتي از موزيك را ميشنوند كه با صداي بم ادا نشده باشد. همچنين وقتي دو نفر در اطاقي مكالمه ميكنند اگر در ديوار مشترك با اطاق مجاور ، سوراخ كوچكي باشد ممكن است صداي آنها را در اتاق مجاور تشخيص داد. در صورتيكه اگر درب همان دو اطاق باز باشد آنكه در همسايگي واقع است ممكن است درست صداي مكالمه در همان اطاق مجاور را بخوبي و مانند سابق نشنود. همينطور وقتي كه در سينما يا تئاتر پشت سر شخص چاق يا قد بلندي بنشينم ، به گونه‌اي كه مشاهده صحنه براي ما مقدور نباشد باز صداي آرتيستها را ميشنويم. فيزيك امواج صوتي كه به بدن آن شخص ميرسند قسمتي جذب شده و قسمتي منعكس ميگردند و قسمتي كه به حدود اطراف بدن او برخورد ميكنند، به واسطه پديده پراش در پشت سر او در هر نقطه كه گوش ما قرار گيرد قابل شنيدن ميباشند.

 

يك آزمايش ساده

قطعه‌اي از نمد را كه تقريبا به مساحت يك متر مربع باشد اختيار كنيد و در وسط آن سوراخي به قطر ۱۵ سانتي متر ايجاد نمائيد. اگر يك فرفره آلماني (نوعي فرفره است كه در جدار آن چند سوراخ وجود دارد، وقتي كه ميچرخد، توليد صدا ميكند) را در فاصله ۳۰ سانتي متري از سوراخ بچرخانيم در هر جايي كه در پشت نمد قرار گيريم صداي آن به آهستگي و به طور يكنواخت شنيده ميشود. و اگر خود را در مقابل سوراخ طوري قرار دهيم كه فرفره را با چشم خود ببينيم، صداي آن از وقتي كه خود را در جاي ديگر قرار دهيم بلندتر شنيده نميشود. تنها وقتي در ناحيه پشت قطعه نمد صداي قويتر شنيده ميشود كه نمد را از ميان برداريم و اين مطلب براي اين است كه در صورت اخير انرژي صوتي بيشتري در گوش ما داخل ميشود.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

اگر بجاي فرفره ، يك ساعت جيبي قرار دهيم (طول موج امواجي كه ساعتها توليد ميكنند از يك الي هشت سانتي متر تغيير ميكند) در اين حالت براي اينكه صداي تيك تيك آن را در پشت قطعه نمد بشنويم بايد خود را در روي محور قرار دهيم، به گونه‌اي كه ساعت از پشت نمد قابل رويت باشد. وقتي كه اين شرط حاصل شد‌، صداي آن عينا مانند وقتي شنيده ميشود كه نمد وجود نداشته باشد و چون در خارج محور واقع باشيم صداي ساعت تقريبا ديگر شنيده نميشود.
شرايط پراش
– فرض كنيد فيزيك امواج صوتي به سطح ديواري كه سوراخي در آن تعبيه شده است، برخورد ميكنند. امواج صوتي را با طول موج معيني در نظر ميگيريم. هرگاه طول موج نسبت به قطر سوراخ بزرگ باشد، چون طبقه متراكم (موج) به ديوار برسد، قسمت كوچكي از آن كه از سوراخ عبور ميكند خود مانند مركز صوت شد. و با آن طرف جدار طبقات كروي متراكم و منبسط ، پشت سر هم بمركز سوراخ درست ميشوند. نتيجه اينكه در پشت مانع در همه جا صدا وجود خواهد داشت. – برعكس اگر طول موج نسبت به قطر سوراخ كوچك باشد ، فيزيك امواج در حين عبور از سوراخ عينا به همان حالت باقي ميمانند. بديهي است كه در اين حالت قسمتي از موج تابشي كه با ديوار برخورد ميكند، خود به خود حذف ميگردد، و فقط قسمت مواجه با سوراخ از آن عبور مي كند.

 

 

 

 

 

 

 

 

 

 

 

 

– بنابراين در حالت اول ، در هر نقطه از پشت جدار كه واقع باشيم، صداي منبع آهسته‌تر ولي به يك اندازه شنيده ميشود، در صورتي كه در حالت دوم ، فقط اگر در ناحيه مقابل سوراخ باشيم صداي منبع را به خوبي ميشنويم و در خارج آن صداي منبع مسموع نيست. علت اينكه در حالت اول صدا آهسته‌تر شنيده ميشود، آنست كه انرژي صوتي كه از سوراخ عبور ميكند روي سطح كروي توزيع شده و ضعيف ميگردد، در صورتي كه در حالت دوم تمام مقدار انرژي صوتي كه از سوراخ عبور ميكند روي فيزيك امواج با سطوح كوچك در پشت مانع متمركز ميباشند.

ساز و كار صوت
براي توليد و انتشار امواج آكوستيكي ، ارتعاشهاي مختلفي وجود دارند. ارتعاشهايي را كه سبب توليد و انتقال موجهاي صوتي مي‌شوند، بر حسب حدود فركانس‌شان طبقه بندي مي‌كنند. ارتعاشهاي صوتي كه در ايجاد صدا موثرند، و با گوش شنيده مي‌شوند، داراي فركانسي بين ۲۰ تا ۲۰۰۰۰ هرتز است.

دگر آهنگش (Modulated)
انرژي آكوستيكي كه همراه گفتار است از ماهيچه‌هاي سينه نشات مي‌گيرد. اين ماهيچه‌ها هنگام انقباض هوا را از ششها به سوي اجزاي مختلفي كه ساز و كار صوتي ا تشكيل مي‌دهند، روانه مي‌سازد. اين جريان دائم هوا را مي‌توان حامل انرژي دانست كه بايد از حيث سرعت و فشار براي توليد صوت دگر آهنگيده شود. اين تغيير لازم به يكي از دو طريق اساسي كه به توليد صوتهاي با صدا و بي‌صدا منجر مي‌شود، انجام مي‌گيرد.
صوت با صدا
صوت با صدا ، شامل حركات حروف مصوت گفتار معمولي و همچنين آهنگهاي مخصوص صداهاي آوازه خواني است. عامل اصلي دگر آهنگش صوتهاي صدادار ناي است كه تارهاي صوتي در عرض آن كشيده شده‌اند.
ساختمان تارهاي صوتي
تارهاي صوتي تشكيل از دو نوار پرده مانند كه ديافراگمي شكاف دار را درست مي‌كنند، تشكيل يافته است، و به واسطه باز و بسته شدن اين شكاف در اثر ارتعاش جريان هوا دگر آهنگيده مي‌شوند. طول سوراخ وسط ديافراگم كه هنگام عمل به شكاف تبديل مي‌گردد، در مردان ۲٫۵ سانتيمتر و در زنان ۱٫۵ سانتيمتر است و كششي كه تارهاي صوتي با آن كشيده مي‌شوند، فركانس اصلي دگر آهنكش را معين مي‌كنند.
وظيفه تارهاي صوتي
عمل تارهاي صوتي اين است كه تغييرات سرعت و فشار جريان دگر آهنگيده را به شكل منحني دندانه اره‌اي در مي‌آورد. وقتي منحني دندانه اره‌اي را به كمك سري فوريه (Fourier) تجزيه كنيم ديده مي‌شود كه تعداد زيادي هارمونيكهايي كه از حيث فركانس با هم ارتباط دارند، در آن منحني قرار گرفته‌اند.
شبكه آكوستيكي
حفره‌هاي متعددي كه در حكم تشديد كننده هستند و همچنين سوراخهاي بيني و حفره‌هاي گلو و دهان بر روي هم يك شبكه آكوستيكي را تشكيل مي‌دهند كه موجهاي فشار را دوباره دگر آهنگيده مي‌كنند. بسياري از اين پارامترها را مي‌توانيم به ميل خود كنترل كنيم، يعني با تغيير دادن وضعيت زبان يا تغيير شكل لبها مي‌توان تعداد زيادي صوت با صدا توليد كرد.
صوتهاي تنفسي
همچنين ساز و كار صوتي مي‌تواند صدا را بدون استفاده از تارهاي صوتي توليد كند. اينگونه صوتها را صوتهاي تنفسي مي‌نامند. مثلا اگر هوا را بطور دائم با فشار توام با تنفس از ششها خارج مي‌سازيم، صدايي مانند هيس توليد مي‌شود كه شبيه به صداي فرار بخار است. ظاهرا اين صدا به واسطه اغتشاشي است كه در جريان هوا هنگام عبور از مسير نامنظم دستگاه صوتي پيدا مي شود.
صوت بي صدا
اينگونه صوتها شامل صامت‌هاي بي صداي مالشي (frictive) مانند f و s و همچنين صامت‌هاي بي صداي ايستي (stop) مانند p و t و k هستند. در اينجا ارتعاش اساسي اينگونه توليد مي‌شود كه لبها ، دندانها و زبان ، جريان هوا را دگر آهنگيده مي‌كنند. تجزيه انواع صوتهاي بي صدا وجود نواري از فركانسهاي پياپي را بيشتر در قسمت بالاي فركانسهاي قابل شنيدن قرار دارند، آشكار مي‌سازد.
سايه صوت (OMBRE ACOUSTIQUE)
آيا سايه صوت قابل مشاهده است؟

سايه صوت چه شكلي تشكيل مي‌شود ؟
آيا سايه صوت را مي‌توان همانند سايه نور تشخيص داد؟
چرا هنگام مكالمه با تلفن هر چند بلند حرف بزنيم باز صداي رسيده به طرف مقابل چندان تغيير نمي‌كند؟

چرا صوت موسيقي كه ما در خارج از تالار مي‌شنويم، به اندازه صداي داخل تالار براي ما جذاب نيست؟
بين صوت و نور ظاهرا جزئي اختلاف مشاهده مي‌شود كه لازم است راجع به آن توضيح دهيم. مي‌دانيم كه صوت و نور هر دو ماهيت موجي دارند و اكثر آنچه را كه در مورد امواج نوري مشاهده مي‌كنيم ، در مورد فيزيك امواج صوتي نيز قابل مشاهده است.
علل تشكيل سايه صوت

از جمله چيزهايي كه وجودش در مورد فيزيك امواج نوري بخوبي قابل روئيت و مشاهده است سايه نور است. در صورتي كه در فيزيك امواج صوتي معمولا سايه واضح مشاهده نمي‌شود. علت حقيقي اين امر اين نيست كه امواج صوتي در برخورد با مانع ، توليد سايه نمي‌كنند. زيرا در عمل مانعي كه ابعادش به اندازه طول موج صوت بزرگ باشد، در دسترس ما نيست.
پراش نور

بزرگي طول موج نور در حدود اعشار ميكروني مي‌باشد. بنابرين ، هر گونه مانعي ولو كوچك هم كه باشد ابعادش نسبت به طول موج نور بي‌نهايت بزرگ است. مثلا ابعاد در ، ديوار ، پرده و دسته صندلي ، برگ درختان و غيره هر كدام ميليونها دفعه و بيشتر بزرگتر از طول موج نور مي‌باشند و البته وقتي مانع خيلي كوچك و يا باريك شود ، مثلا به كوچكي سوزن و يا به باريكي رشته مويي باشد. ديگر نمي‌تواند براي نور ، سايه خوبي درست كند. و در اين حالت پديده ديفراكسيون حادث مي‌گردد و در پشت مانع بطريق خاصي نور مشاهده مي‌شود.

ديفراكسيون صوت
طول موج صداهاي انساني در حدود متر است (براي حرف زدن معمولي مردان طول موج از ۲٫۵ -۳ متر و براي حرف زدن معمولي زنها طول موج از ۱٫۲ متر تا ۱٫۵ متر تغيير مي‌كند) بنابرين مثلا ديواري كه داراي ده متر باشد. نسبت به طول موج چندان بزرگ نيست و نمي‌تواند براي آن حائل خوبي باشد و از اين جهت در اثر ديفراكسيون صوت صداي صحبت كننده از پشت آن شنيده مي شود.

نمايش سايه صوت
اگر نت صوت خيلي زير باشد مشاهده سايه آن آسانتر است. و مي‌توان در آزمايشگاه با آنها سايه صوت را درست كرد. مثلا ممكن است با سوت گالتن (سوتي است كه طول موج آن در حدود دسيمتر و اعشار آن مي‌باشد) با بكار بردن مقوايي به ابعاد متر تا اندازه سايه صوت را قابل مشاهده نمود.
مي‌دانيم كه هر نوع صوتي با مشخصات سه گانه خود يعني شدت ، ارتفاع ، طنين مشخص مي‌گردد. و چون هر گونه صدايي مخلوط از صداي اصلي و هارمونيكهاي آن و در نتيجه مخلوطي از صداهايي با ارتفاع مختلف مي‌باشد. و لذا وقتي مانع در جلو فيزيك امواج صوتي قرار مي‌گيرد ممكن

است بعضي از آن صداها زيرترند بكلي متوقف گردند و براي آنها توليد سايه شود و يا بطور ناقص به پشت مانع برسند. بنابراين عمل مانع نسبت به صداهاي زير و بم يكسان نمي‌باشد. نتيجه اينكه ممكن است در خلا ، ديوار مشخصات صوتي كه در جلوي آن درست شده است موجود نباشد. و بطور خلاصه صدا در رسيدن به پشت مانع تغيير نمايد.