مقدمه

لیزر این نور شگفت از نظر ماهیت هیچ تفاوتی با نور عادی ندارد و خواص فیزیکی لیزر ، آنرا از نورهای ایجاد شده از سایر منابع متمایز می‌سازد. از نخستین روزهای تکنولوژی لیزر ، به خواص مشخصه آن پی برده شد. و ما بصورتی گزینشی به این خواص از ماهیت فرآیند لیزر می‌پردازیم که خود این خواص بستری عظیم برای کاربردهای وسیع این پدیده ، در علوم مختلف بخصوص صنعت و پزشکی و … ایجاد کرده است. به جرأت می‌توان گفت پیشرفت علوم بدون تکنولوژی لیزر امکان پذیر نیست.

شاید مهترین بخش فیزیک اتمی بحث مربوط به فیزیک لیزر باشد.

می دانید که با دادن انرژی به الکترونهای یک اتم می توان آنها را به مدارهای بالاتری برد. (حتماً با این تصویر کلاسیک که الکترون ها مدارهایی با انرژی مشخصی به دور هسته وجود دارند، آشنایید.) اما این خانه جدید برای الکترونها خیلی وضعیت پایداری ندارد و الکترونها ترجیح می دهند با پس دادن انرژی به مدار اصلی خودشان برگردند. این انرژی به صورت یک فوتون با فرکانس مشخص آزاد می شود. یعنی یک واحد انرژی … اما می دانید که نور از همین فوتونها ساخته می شود. پس اگر با تعداد زیادی از اتمها به طور هم زمان این کار را انجام دهیم، می توانیم پرتو نوری تک فرکانس ایجاد کنیم. علاوه بر اینکه با روشهایی و دقت هایی می توان پرتوهای هم فاز تولید کرد. زیاد نمی خواهیم راجع به لیزر و ویژگیهای آن توضیح دهیم اما همین مهم است که بدانیم که این پدیده اساس تولید پرتوهای لیزر است. کلمه لیزر که انگلیسی آن

“LASER”

“است مخفف عبارت:” شدت بخشی نور با استفاده از انتشار تحریک شده تابش است.

(Light Amplification by the stimulated Emission of Rodiation)

اما سوال مهم این است که برای داشتن لیزر با ویژگیهای خاص از اتمهای چه موادی، در چه شرایطی (غلظت، دما، فشار، ……) می توان استفاده کرد.

پاسخ بیشتر این سوالات در آزمایشگاه به دست می آیند، پس فیزیک لیزر جزو مباحث تجربی فیزیک جای می گیرد.در ایران نیز مراکزی چون مرکز تحقیقات لیزر، سازمان انرژی اتمی و … مهمترین مراکزی هستند که پذیرای فیزیکدانان اتمی و لیزر هستند.

آنچه كه سبب مي شود پرتو ليزر از نورهاي ديگر متمايز شود در حقيقت ويژگيهاي منحصر بفرد آن است كه در هيچ منبع نوري ديگر يافت نمي شود. چهار ويژگي عمده ليزر عبارتند از:

۱- همدوسي         ۲- تك رنگي   

۳- واگرايي كم    ۴- موازي بودن پرت

 

 

نگاه اجمالی

لیزر کشفی علمی می‌باشد که به عنوان یک تکنولوژی در زندگی مدرن جا افتاده است. لیزرها به مقدار زیاد در تولیدات صنعتی ، ارتباطات ، نقشه ‌برداری و چاپ مورد استفاده قرار می‌‌گیرند. همچنین لیزر در پژوهشهای علمی و برای محدوده وسیعی از دستگاههای علمی‌، موارد مصرف پیدا کرده است. برتری لیزر در این است که از منبعی برای نور و تابشهای کنترل شده ، تکفام و پرتوان تولید می‌کند. تابش لیزر ، با پهنای نوار طیفی باریک و توان تمرکزیابی شدید ، چندین برابر درخشانتر از نور خورشید است

دیدکلی

از هنگام بوجود آمدن لیزر به علت دارا بودن محسنات خلوص فرکانسی ، پهنای باند و سیع ، راستاوری خوب و غیره ، بررسی موارد کاربرد آن به عنوان حامل در مخابرات و در نتیجه بکار گیری محاسن فوق تا کنون ادامه داشته است. در ابتدا گفته می‌شد به علت اینکه فرکانسها صدها هزار برابر می‌شود (حدود ۱۰۵ برابر) ، تعداد کانالها افزایش می‌یابد که با ارزیابی خوشبینانه تری توام گشته است. استفاده از نور در مخابرات با پیدایش انسان شروع شد و بعد از اختراع لیزر ، دانشمندان توجه خاصی به استفاده از نور جهت انتقال اطللاعات مبذول داشتند. استفاده از لیزر نیم رسانا و تار نوری با تلفات کم از پیشرفتهای مهم در این خصوص بوده است

 

 

ریشه لغوی Laser  

کلمه لیزر

از حروف ابتدای عبارت “تقویت نور بوسیله گسیل القایی تابش”

(Light Amplification by Stimulated Emission of Radiation)

در لاتین ساخته شده است که معمولاً در طول موجهای مادون قرمز نزدیک ، مرئی و ماورای بنفش طیف الکترومغناطیس می‌باشد. به گسیلهای لیزر گونه طول موجهای بلندتر ناحیه میکروویو “میزر”

گفته می‌شود. لیزر اصولاً به منبع نور همدوس و تکرنگ گفته می‌شود

تاریخچه

میمن برای نخستین بار لیزر یاقوت را در سال ۱۹۵۹ ساخت.پس از دو سال آقای ایمان اخوان، دانشمند ایرانی برای نخستین بار لیزر گازی هلیوم- نئون را ساخت.

از حدود سال ۱۹۶۶ لیزر نیم رسانا در مخابرات نوری در ژاپن و آمریکا مورد توجه قرار گرفت و نسبت به امکان مد گردانی مستقیم آن تا فرکانسهای فوق‌العاده زیاد شناخت حاصل شده است.

پیشنهاد استفاده از گسیل القایی از یک سیستم با جمعیت معکوس برای تقویت امواج میکروویو بطور مستقل بوسیله وبر ،جوردون،زیگر،باسو،تانز و پروخورو داده شد. اولین استفاده عملی از چنین تقویت کننده‌هایی توسط گروه جوردون ، زیگر و تاونز در دانشگاه کالیفرنیا انجام شد.این گروه نام میزر را که از ابتدای حروف تشکیل شده بود برای آن برگزیدند:

“Microwave Amplification by Stimulated Emission of Radiation”

اولین میزر با استفاده از گذار میکروویو در مولکولهای آمونیاک ساخته شد. در سال ۱۹۵۸ اولین بار پیشنهاد فعالیت میزر در فرکانسهای نوری در مقاله‌ای توسط اسکاولو و تاونز داده شد.

در سال ۱۹۶۰ یعنی کمتر از دو سال دیگر ، میلمن موفق به ساخت لیزر پالسی یاقوت شد. این لیزر کار

که لیزر گازی هلیوم نئون بود، در سال ۱۹۶۱ توسط علی جوان ایرانی ساخته شد. در سال ۱۹۶۲ نیز پیشنهاد لیزرهای نیمه ‌هادی مطرح گردید.

سیر تحول و رشد

با پیشرفت روزافزون مکانیک کوانتومی و جنبه‌های ذره‌ای نور و تولید آینه‌هایی با توان بالا دانشمندان لیزرهایی را با توان خروجی بهتر(لیزرهای توان بالا) و همدوسی بالاتر ساخته شدند.

اختراع لیزر به سال ۱۹۵۸ با نشر مقالات علمی در رابطه با میزر اشعه مادون قرمز و نوری بر می‌گردد. نشر مقالات مذکور سبب افزایش تحقیقات علمی توسط دانشمندان در سر تا سر جهان گردید. در بخش ارتباطات نیز کارشناسان توانایی لیزر را که جایگزین ارسال یا مخابره الکتریکی شود، تأیید نمودند. اما اینکه چگونه پالسها را مخابره نمایند، مشکلات زیادی را بوجود آورد. در سال ۱۹۶۰ دانشمندان پالس نور را مخابره نمودند، سپس از لیزر استفاده کردند. لیزر ، نور خیلی زیادی را تولید نمود که بیش از میلیونها بار روشنتر از نور خورشید بود. متأسفانه پرتو لیزر می‌تواند خیلی تحت تأثیر شرایط جوی مثل بارندگی ، مه ، ابرهای کم ارتفاع ، چیزهای موجود در آزمایشهای مربوط به هوا از قبیل پرندگان قرار گیرد.

دانشمندان نیز طرحهای جدیدی را جهت حمایت نور از برخورد با موانع را پیشنهاد نمودند. قبل از اینکه لیزر بتواند سیگنالهای تلفن را ارسال دارد. اختراع مهم دیگر موجبر فیبر نوری بود که شرکتهای مخابراتی برای ارسال صدا ، اطلاعات و تصویر از آن استفاده می‌کنند. امروزه ارتباطات الکترونیکی بر پایه فوتونها استوار می‌باشد. تکنولوژی تسهیم طول موج یا رنگهای مختلف نوری برای ارسال تریلیون بیت فیبر نوری استفاده می‌کند.

بعد از اینکه لیزر دی اکسید کربن در سال ۱۹۶۴ اختراع شد کاربرد لیزر در زمینه‌های پزشکی خیلی توسعه یافت و برای جراحان این امکان را فراهم نمود تا بجای استفاده از چاقوهای جراحی از فوتون استفاده نمایند. امروزه لیزر می‌تواند وارد بدن گردد، اعمال جراحی را انجام دهد، در صنایع و در کارهای ساختمانی ، در وسایل نظامی و غیره کاربردهای فراوان آنرا می‌توان مشاهده نمود.

 

سازوکار لیزر

نخست لازم است تا به محیط فعال لیزری به نحوی انرژی داده شود. به این عمل پمپاژ لیزر می‌گویند. عمل پمپاژ به روشهای گوناگونی صورت می‌گیرد که می‌توان به پمپاژ نوری، پمپاژ الکتریکی، پمپاژ توسط لیزرهای دیگر (پمپاژ لیزری)و جز اینها نام برد.

گونه‌های لیزر

لیزرها را براساس مواد لیزرزا به چند گروه زیر بخش بندی می‌کنند : لیزرهای جامد، لیزرهای گازی، لیزرهای مایع یا رزینه، لیزرهای الکترون آزاد و لیزرهای نیمه رسانا لیزرها را بر پایه خروجی آنها به دو دسته لیزرهای تپی و لیزرهای پیوسته کار تقسیم بندی می‌کنند. غالبا لیزرهای توان بالا را از نوع تپی (پالسی) میسازند.

ساختار لیزر

یک سیستم لیزری عموما از سه بخش عمده تشکیل شده است:

منبع انرژی ( که معمولا یک پمپ و یا یک منبع مشابه است)

بستر تشدید کننده یا بستر لیزر

۳- آینه و یا مجموعه‌ای از آینه ها که یک افزایش دهندهٔ نوری را تشکیل می‌دهند.

یک منبع پمپی قسمتی است که انرژی لازم را برای سیستم لیزری فرآهم می‌کند. نمونه هایی از منابع پمپی شامل تخلیه کننده‌های الکتریکی، لامپهای درخشنده، لامپهای جرقه ای، نور لیزرهای دیگر، واکنشهای شیمیایی و حتی وسایل انفجاری میباشند. نوع منبع پمپ مورد استفاده اصولا بستگی به بستر تشدید کننده دارد و این بستر است که عموما تعیین می‌کند چه میزان انرژی بایستی به بستر منتقل شود. یک لیزر هلیوم- نئونی در مخلوط گاز هلیوم – نئون از تخلیهٔ الکتریکی استفاده می‌کند و لیزر یاقوتی از نوری که از لامپ درخشندهٔ زنونی ساطع شده متمرکز می‌شود و در آخر لیزرهای اگزایمر از یک واکنش شیمیایی استفاده می‌کنند.

بستر تشدید کننده عامل اصلی تعیین کنندهٔ طول موج در هنگام استفاده و خصوصیات دیگر لیزر می‌باشد. اگر نگوییم هزاران بستر مختلف، قطعا صدها بستر تشدید ساز مختلف وجود دارد که در آن کارایی مورد نظر بدست میآید. بستر تشدید کننده توسط یک منبع پمپ انرژی تحریک شده تا فراوانی معکوسی تولید کند و در ادامه بستر تشدید کننده بتواند انتشار خود به خود و تحریک شده‌ای از فوتونها را ایجاد کند که نهایتا باعث عمل تشدید نوری و یا ارتقاء نوری می‌شود.

نمونه هایی از بسترهای مختلف تشدید کننده شامل موارد زیر هستند:

مایعات مثل لیزرهای رنگی. این مایعات عموما حلالهای شیمیایی آلی هستند. مواردی همچون متانول، اتانول، یا اتیل گلیکول که رنگهایی شیمیایی همچون کومارین یا رودامین و فلوئورسین به آنها افزوده می‌گردد. ساختار شیمیایی واقعی ملکولهای رنگ تعیین کنندهٔ طول موج بدست آمده از لیزرهای نوریست. گازها مثل دی اکسید کربن، آرگون، کریپتون و مخلوطی از هلیوم و نئون. این لیزرها اغلب از تخلیهٔ الکتریکی برای پمپ کردن استفاده می‌کنند. جامدات مثل کریستال ها یا شیشه ها. مواد جامد بکار گرفته شده معمولا با یک ناخالصی خاص مثل کروم، نئودیمیوم، اربیوم، یا یونها تیتانیوم ترکیب می‌گردند.

مواد جامد بکار گرفته شده عموما یاقوت و یا یاقوت کبود و شیشه‌های سیلیکونی هستند.

نمونه هایی از بسترهای لیزری جامد شامل:

Nd: YAG, Ti: sapphire, Cr: sapphire, Cr: LiSAF (chromium-doped lithium strontiumaluminium fluoride), Er: YLF and Nd: glass

 

میباشند.لیزرهای جامد عموما توسط لامپهای درخشان و یا نور لیزرهای دیگر پمپ میشوند. نیمه هادی ها، نوعی از جامدات هستند که در آنها حرکت الکترونها بین ماده با سطوح مختلف ناخالص ساز ها می‌تواند منجر به ایجاد عملکرد لیزر شود. لیزرهای نیمه هادی عموما بسیار کوچک هستند و می‌توانند با یک جریان سادهٔ الکتریکی پمپ شوند که این خصوصیت آنها، باعث ایجاد توانایی طراحی و ساخت ابزارهایی فراوان و همه جا در دسترسی همچون دستگاههای نمایش سی دی شده است.

تشدید کننده‌های نوری و یا حفره‌های نوری در ساده‌ترین شکل خود دو آینهٔ موازی هستند که در اطراف بستر تشدید کننده قرار میگیرند. نور ساطع شده از بستر توسط انتشار خود به خود تولید شده و توسط آینه هایی که آنرا به بستر باز می‌گردانند بازتابیده می‌شود. در اینجاست که این پرتو می‌تواند بازتابیده و یا تشدید شود. نور ممکن است از آینه ها بازتابیده شده و یا از بستر تشدید کننده بگذرد که در این حالت صدها بار بیشتر از زمانی که در حفره نوری بود می‌باشد. در لیزرهای پیچیده تر، تنظیم توسط ۴ و یا تعداد بیشتری آینه باعث ایجاد حفره‌های مورد نظر می‌شود. طراحی و تنظیم آینه ها با توجه به بستر برای تعیین طول موج مورد نیاز و دیگر خصوصیات سیستم لیزری انجام میگیرد.

دیگر ابزارهای نوری همچون آینه‌های گردان، تعدیل کننده ها، فیلتر ها و جاذب ها ممکن است در تشدید کنندهٔ نوری لحاظ شوند تا بتوانند اثرات مختلف و کاملا اختصاصی ای بر روی تولید امواج نور لیزری بگذارند

اسکن میکروسکوپی لیزری هم کانون

اسکن میکروسکوپی لیزری هم کانون ابزاری مفید برای بازسازی سه بعدی و بدست آوردن تصاویر سه بعدی با کیفیت بالاست. خصوصیت کلیدی میکروسکوپی هم کانون توانایی آن در ایجاد تصاویر بدون کدورت از نمونه ها ی ضخیم در عمقهای مختلف است. اصول این نوع خاص از میکروسکوپی توسط ماروین مینسکی در سال۱۹۵۳ کامل شد اما هنوز سی سال دیگر زمان لازم بود تا لیزر بتواند بعنوان یک منبع نور نقطه‌ای برای میکروسکوپی هم کانون و بعنوان روشی استاندارد در اواخر دههٔ ۱۹۸۰ مورد استفاده قرار بگیرد.

تشکیل تصویر

در اسکن میکروسکوپی لیزری هم کانون یک پرتو لیزری از روزنهٔ منبع نوری گذشته و سپس توسط عدسی های شیئی به حجم کانونی کوچکی بر روی یک نمونهٔ فلورسانت متمرکز می‌شود. سپس مخلوطی از نور فلورسانت تابیده شده و لیزر بازتابیده شده از نقطهٔ مورد تابش قرار گرفته توسط عدسی های شیئی جمع آوری می‌شود. یک جدا کنندهٔ طیفی مخلوط نور را با گذر انتخابی نور لیزری و بازتاباندن نور فلورسانت به دستگاه جداساز از هم مجزا می‌کند. پس از گذر این نور، نور فلورسانت توسط یک وسیلهٔ جدا کنندهٔ نور( لولهٔ تشدید کنندهٔ نور و یا دیود بهمن نوری) باعث تغییر سیگنال نوری به یک سیگنال الکترونیکی شده که در مرحلهٔ بعد این سیگنال الکتریکی توسط رایانه قرائت می‌شود.

روزنهٔ جداساز از ورود نور به اصطلاح تنظیم نشده یعنی نور فلورسانسی که از سطح کانونی عدسی های شیئی منشاء گرفته ممانعت به عمل می‌‌آورد. پرتوهای نوری از زیرسطح کانونی قبل از رسیدن به جداساز متمرکز می‌گردند و بخش عمده‌ای از آنها بواسطهٔ متمرکز نبودن بر روزنهٔ جداساز حذف می‌گردند و بقیهٔ پرتو ها به جداساز میرسند. در این روش بخش خارج از کانون قسمت بالا و پایین به میزان زیادی کاهش میابد که نهایتا باعث تشکیل تصویری واضح تر نسبت به روش های میکروسکپی سنتی می‌گردد. نور جداسازی شده‌ای که از بخش

نورانی نمونه منشاء گرفته در تصویر حاصله بشکل یک نقطه نمایش داده می‌شود. بنابراین تصویر نهایی ردیف به ردیف و نقطه به نقطه تشکیل می‌گردد و درخشش نهایی تصویر حاصله با شدت نور جداسازی شدهٔ فلورسانت مطابقت خواهد داشت. پرتو سرتاسر نمونه را بشکل صفحه‌های افقی و با استفاده از آینه‌های نوسانگر خود مهار شونده اسکن می‌کند. این

روش اسکن( پویش) کردن معمولا امکان ایجاد واکنشهای نهفتهٔ کمتری دارد و با کم شدن سرعت آن نسبت قابل قبول تری از سیگنال به خطا را نتیجه می‌دهد و نهایتا تباین و کیفیت بالاتری نتیجه می‌دهد. اطلاعات لازم را می‌توان با صفحه‌های کانونی متعدد و با تغییر سطح میکروسکوپ به سمت بالا و پایین بدست آورد. رایانه می‌تواند یک تصویر سه بعدی از نمونه را بوسیلهٔ سری زدن تعداد زیادی از تصاویر دو بعدی متوالی ایجاد کند.

بعلاوه میکروسکوپی کانونی پیشرفت زیادی را در کیفیت نهایی و ظرفیت برش نوری سری مناسب فراهم کرده که این امر حتی در نمونه‌های زندهٔ با حداقل آماده سازی قابل مشاهده است. با توجه به اینکه این روش وابسته به فلورسانس است، نمونه ها معمولا بایستی با رنگهای فلورسانس رنگ آمیزی شوند. با اینحال بایستی توجه کرد که غلظت مواد خارجی به حدی کم باشد که بر روی ساز و کار طبیعی زیستی تاثیر منفی نگذارد. برخی ابزار ها حتی قادر به ردیابی یک ملکول خاص فلورسانس نیز میباشند. همچنین روشهای ترنس ژنیک می‌توانند ارگانیسمهایی را بوجود بیاورند که خودشان ملکول فلورسانس تولید کنند.(مثل پرونئینهای سبز فلورسانت).

ارتقاء کیفیت با بکارگیری اصول هم کانونی

وقتی روش مورد استفادهٔ ما روش میکروسکوپی لیزری هم کانون باشد روشی که برای توصیف تفکیک پذیری مورد استفاده قرار میگیرد بسادگی قابل مقایسه با دیگر روشهای اسکن همچون اسکن میکروسکوپی تونلی می‌باشد. این روش با اسکن نوک اتمی بر روی سطح هادی انجام می‌شود و همراه با تونلهای مجزاییست که هر جزء سطح را پایش می‌کند. اگر نوک اتمی کند شود، یعنی اگر شامل جند اتم شود کیفیت تصویر حاصله کاهش میابد.

Scmدر روش

یک نمونه یفلورسانت توسط یک منبع نقطه‌ای لیزر مورد تابش قرار گرفته و کیفیت تصویر هر کدام از اجزا با شدت تابش فلورسانت حاصله متناسب خواهد بود. در اینجا اندازهٔ نوک اسکن کننده که برای کیفیت پایانی بسیار حیاتی است توسط حد انکسار سیستم نوری تعیین می‌گردد. این حالت موید این حقیقت است که تصویر منبع نقطه‌ای لیزر اسکن کننده یک نقطهٔ بی نهایت کوچک نیست بلکه از یک الگوی سه بعدی انکساری تبعیت می‌کند. اندازهٔ الگوی انکسار و اندازهٔ کانونی توسط اندازهٔ روزنهٔ عدسی های شیئی سیستم و طول موج لیزر مورد

استفاده تعیین می‌گردد. این حالت را می‌توان بسادگی در حد تفکیک میکروسکوپهای نوری قدیمی مشاهده کرد که به اصطلاح به آن تابندگی گسترده می‌گویند. با اینهمه این مشکل با تکنیکهای تابندگی نور به اندازهٔ کوچکی که در هر زمان جداسازی می‌شود قابل بر طرف کردن است. با اینهمه این بسیار مهم است که حجم موثر نور تولیدی معمولا کمتر از حجم

تابندگیست یعنی الگوی انکسار تولید نور قابل جداسازی دقیق تر و البته کوچکتر از الگوی انکسار تابندگیست. این به آن معناست که حد تفکیک میکروسکوپهای هم کانون نه تنها به احتمال تابندگی بستگی دارد بلکه به احتمال ایجاد فوتونهای قابل جداسازی نیز وابسته اند. بسته به خصوصیات فلوئورسانس رنگهای بکار رفته پیشرفتهای محدودی می‌تواند در کیفیت

جانبی میکروسکوپهای سنتی بوجود آید. با اینهمه با استفاده از فرایند تولید نور با احتمال کمتر وقوع ایجاد اثرات ثانویه، با تمرکز بر نقطهٔ محدود با بالاترین کیفیت ممکن می‌توان به ارتقاء کیفیت جانبی به اندازه‌ای قابل توجه امید وار بود. متاسفانه احتمال تولید فوفتونهای قابل جداسازی اثر نامطلوبی بر نسبت سیگنال به خطا دارد. این مشکل را می‌توان بوسیلهٔ استفاده از فوتو دیتکتورهای بیشتر و یا با افزایش شدت منبع نقطه‌ای لیزر تابیده شده جبران کرد. افزایش شدت این خطرات باعث بی رنگ شدن و یا آسیب به نمونهٔ مورد نظر می‌شود خصوصا اگر آزمایشاتی برای مقایسهٔ درخشش فلورسانس مورد نیاز باشد.

 

LASEK در مقابلLASIK

LASEK

فرآیندیست که در آن تغییرات دایمی قرنیه با استفاده از لیزر اگزایمر برای برداشتن مقدار کمی از بافت جلوی چشم، بافتی که درست زیر لایهٔ خارجی اپیتلیوم قرار دارد انجام می‌شود. بر خلاف لیزیک در این فرایند اپیتلیوم از پردهٔ قرنیه برداشته نمیشود و اپیتلیوم باعث حفاظت از چشم در طی انجام این فرآیند شده و بعدها بصورت یک بانداژ طبیعی برداشته می‌شود.

از آنجایی که بر خلاف لیزیک در این فرایند از چاقو/میکروکرماتور یا لیزر برنده استفاده نمیشود، پایداری قرنیه کاملا بدون تغییر باقی میماند اما درد یشتر و بهبودی دید آهسته تر از فرآیند لیزیک خواهد بود. همانند پی پی کا

در لیزک خطر جابجا شدن پرده‌های قرنیه که ممکن است به کرات در اثر ضربه حتی سالها بعد از فرآیند لیزیک رخ دهد وجود ندارد.