تعریف نیمه رسانا

نیمه‌رسانا یا نیمه هادی عنصر یا ماده ای که در حالت عادی عایق باشد ولی با افزودن مقداری ناخالصی قابلیت هدایت الکتریکی را پیدا کند نیمه رسانا میگویند(منظور از ناخالصی عنصر یا عناصر دیگری است غیر از عنصر اصلی یا پایه برفرض مثال اگر عنصر پایه سلیسیوم باشد ناخالصی میتواند آلومنیوم یا فسفر باشد). ومقاومت آن بین رساناها و نارساناهاست. از نیمه رساناها برای ساخت قطعاتی نظیر دیود و ترانزیستور و … استفاده می‌شود. ظهور نیمه رسانا ها در علم الکترونیک انقلاب عظیمی را در این علم ایجاد کرده که اختراع رایانه یکی از دستاوردهای این انقلاب است.
انواع نیمه رساناها:

نیمه رساناها به دو نوع قسمت بندی میشوند.
۱٫نوع پی P یا Positive یا مثبت یا گیرنده الکترون
۲٫نوع ان N یا Negative یا منفی یا دارنده الکترون اضافی.
چطور نیمه رساناها کار می کنند؟
نیمه رساناها (Semi-Conductors) در زندگي ما و بهتر بگوييم در قدم گذاردن بشر به عصر ديجيتال و فيزيك و الكترونيك نوين؛ نقش تاريخي ايفا كرده‌اند.

نيمه رساناها را در درون دستگاه‌هاي گوناگوني يافت مي‌كنيد. اساس ساخت پردازشگر‌ها و ريز پردازنده‌ها و تمام دستگاه‌هايي كه به نحوي اطلاعات و عملیاتی را پردازش می‌کنند، نیمه رساناست. از کامپیوتر شخصی‌ شما گرفته تا پخش کننده mp3 و دستگاه‌های عکس‌برداری پزشکی MRI.
نیمه رسانا در ساده‌ترین شکل خود یک «دیود» (Diode) یا یکسو کننده است و برای درک ساختار نیمه رساناها بهتر است از مطالعه روی دیود شروع کنیم. در ادامه به چگونگی ساخت دیود می‌پردازیم.

سیلیکون یکی از عناصر سازنده زمین و بعد از اکسیژن بیشترین فراوانی را در پوسته زمین دارد به طوری که ۲۵٫۷٪ از جرم پوسته زمین از سیلیکون تشکیل شده است.
سیلیکون عنصر چهاردهم جدول تناوبی عناصر است و با نماد Si شناخته می‌شود. سیلیکون در حالت آزاد به صورت جامد سخت و شفافی یافت می‌شود.
کربن، ژرمانیم و سیلیکون (ژرمانیم نیز مانند سیلیکون یک نیمه رسانا است) همگی خواص مشابهی در لایه ظرفیت الکترونی خود دارند که آن‌ها را از باقی عناصر متمایز می‌سازد. دارا بودن ۴ الکترون در اربیتال آخر آن‌ها و نیمه پر بودن لایه ظرفیت خواصی مانند تشکیل کری

ستال و خاصیت‌ها ترکیبی منحصر بفردی را برای این عناصر بوجود آورده است.

شبکه یونی در کربن به شکل کریستال شفاف است ولی در سیلیکون به شکل جامد نقره‌ای رنگ است.
فلزات به دلیل دارا بودن الکترون‌های آزاد در لایه ظرفیت خود معمولاً رساناهای خوبی برای جریان برق هستند. با اینکه بلور سیلیکون شبیه فلز است ولی خواص فلزی ندارد.
الکترون‌ها لایه خارجی در سیلیکون در قید جاذبه بین یکدیگر هستند و در ضمن گاف انرژی در بین لایه‌های پر و خالی برای انتقال الکترون کافی نیست.
تمامی این شرایط را می‌توان تغییر داد و می‌توان سیلیکون را تبدیل به ماده دیگری کرد که خواص رسانایی الکتریکی را داشته باشد. این کار طی پروسه‌ای به نام ناخالص سازی انجام می‌شود.
در این روش به شبکه یونی سیلیکون ناخالصی‌هایی اضافه می‌شود.
ناخالصی‌هایی که به ساختار شبکه سیلیکون اضافه می‌شود را می‌توان با دو دسته تقسیم کرد:
• نوع N: با اضافه کردن ناخالصی‌هایی از قبیل فسفر و یا آرسنیک در مقادیر بسیار کم. آرسنیک و فسفر هر دو پنج الکترون در لایه ظرفیت خود دارند به همین دلیل الکترون پنجم لایه‌های ظرفیت‌ آن‌ها می‌تواند به عنوان الکترون آزاد عمل کند و کار انتقال جریان را انجام دهد. این نوع سیلیکون رسانای خوبی است. الکترون بار منفی و یا Negative دارد به همین دلیل به این نوع N می‌گویند.

• نوع P: در اینجا عناصر بور و گالیم به سیلیکون اضافه می‌شوند. این دو عنصر سه الک

ترون در لایه ظرفیت خود دارند. وقتی به شبکه یونی سیلیکون وارد می شوند حفره‌هایی را ایجاد می‌کنند که باعث می‌شود که الکترون سیلیکون پیوند خود را از دست بدهد. وقتی یکی از الکترون‌ها از شبکه یونی خارج شود، خاصیت مثبت الکتریکی در ماده ایجاد می‌شود. به این ترتیب حفره و یا بهتر بگوییم فضای خالی الکترون می‌تواند میزبان خوبی برای الکترون از اتم کناری باشد و به این ترتیب جریان می‌تواند به راحتی در آن شارش کند. از این رو این نوع را P می‌نامند که این نوع دارای بار مثبت یا Positive است.الکتریسیته‌ای جالبی از خود نشان می‌دهند. با قرار دادن این دو به هم دیود ایجاد می‌شود.
دیود جریان را تنها در یک جهت از خود عبور می‌دهد. به همین دلیل آن را یکسو کننده نیز می‌نامند. قسمت مثبت یعنی P یا حفره به طرف منفی باتری متصل و N یا الکترون به طرف مثبت آن. هیچ جریانی از محل اتصال عبور نمی‌کند زیرا الکترون‌ها در N و P در خلاف یکدیگر حرکت می‌کنند.
اگر باتری را در جهت دیگر متصل کنید الکترون‌های قسمت N توسط قطب منفی دفع و حفره‌های P توسط قطب مثبت دفع می‌شوند. در محل اتصال حفره‌ها و الکترون‌ها به هم می‌رسند و محل حفره‌ها با الکترون‌ها پر می‌شود و جریان در محل اتصال شارش می‌کند.
از لحاظ الکتریکی یک دیود هنگامی عبور جریان را از خود ممکن می‌سازد که شما با برقرار کردن ولتاژ در جهت درست (+ به آند و – به کاتد) آنرا آماده کار کنید. مقدار ولتاژی که باعث می‌شود تا دیود شروع به هدایت جریان الکتریکی نماید ولتاژ آستانه یا (forward voltage drop) نامیده می‌شود که چیزی حدود ۰٫۶ تا ۰٫۷ ولت می‌باشد.
اما نکته مهم آنکه تمام دیودها یک آستانه برای حداکثر ولتاژ معکوس دارند که اگر ولتاژمعکوس بیش از آن شود دیوید می‌سوزد و جریان را در جهت معکوس هم عبور می‌دهد. به این ولتاژ آستانه شکست گفته می‌شود.
در ادامه به کاربرد‌های دیود‌ها و ترانزیستور‌ها می‌پردازیم. تا اینجا دریافتیم که دیود وسیله‌ای است که جریان را در جهتی حرکت می‌دهد در حالی که در جهت دیگر آن را متوقف می‌کند.
کاربرد‌های زیادی از همین خاصیت می‌شود. برای مثال وسایلی که نیروی محرکه الکتریکی آن‌ها از باتری تأمین می‌شود دارای دیود هستند و اگر باتری را در جهت اشتباه بزنید دیود جلوی عبور جریان را می‌گیرد و به دستگاه آسیبی نمی‌رسد.
ترانزیستور مجموعه‌ای از دیود‌های متصل به هم است. این اتصال‌ها که معمولاً به صورت NPN و یا PNP انجام می‌شنوند به صورت یک سوئیچ عمل می‌کند. شاید فکر کنید که با این کار دیگر هیچ مقداری جریان از ترانزیستور گذر نمی‌کند. دقیقاً همین‌طور است.ولی اگر جریان به محل میانی ترانزیستور داده شود می‌تواند جریان بسیار کمی را به جریان زیادی در یک جهت تبدیل کند.
همین واقعیت است که خاصیت سوئیچ بودن را به ترانزیستور می‌دهد و می‌تواند با جریانی کم روشن و خاموش شود.
با استفاده از همین حقایق امروزه میلیون‌ها ترانزیستور پردازشگر‌ها را تشکیل می‌دهند که در حقیقت میلیون‌ها سوئیچ متصل به هم هستند.
همانطور که می‌دانید اساس دیجیتال واحد‌های باینری یا صفر-و-یک است. به این ترتیب این سوئیچ‌ها می‌توانند میلیون‌ها محاسبه و عملیات منطقی را انجام دهند که می‌تواند به پردازش‌های بزرگی ختم شود.

 

طریقه ساخت دیود از نیمه رساناها:
از پیوند نیمه رسانای نوع N با نوع P عنصری به نام دیود بدست میاد که خاصیت یکسو سازی ان بیشترین کاربرد را در الکترونیک دارد.(در دیود هیچ تفاوتی بین اینکه نوع P را با نوع N پیوند دهیم یا نوع N را با نوع P پیوند دهیم وجود ندارد و در هر صورت عنصر بدست امده دیود خواهد بود)
خاصیت دیود: دیود از نوع سیلیسیم تا ولتاژ حدود ۰٫۷ ولت عایق بوده و بعد از آن به یک رسانای خوب تبدیل میگردد.این ولتاژ استانه تحریک برای دیودهای مختلف متفاوت است و برای روشن شدن دیود سلیسیومی ۰٫۷ ولت نیاز است ولی وقتی که دیود روشن شد ولتاژ دو سر ان به ۰٫۵ ولت میرسد.
انواع پیوند نیم رسانا

ساخت پیوندهای p – n
پیوندهای رشد یافته :
یکی از روشهای اولیه ساخت پیوند ، روش پیوند رشد یافته ‌است. در این روش حین رشد بلور ، نوع ناخالصی در ماده مذاب به‌صورت ناگهانی عوض می‌شود. این روش ابتدایی رشد پیوند ، توسط روشهای انعطاف‌پذیرتری که در آنها پیوند بعد از رشد بلور ایجاد می‌شود، جایگزین شده ‌است. البته یک استثنا مهم در این مورد رشد رونشستی پیوندهای p – n است که بطور گسترده در مدارهای مجتمع و سایر کاربردها استفاده می‌شود.

پیوندهای آلیاژی :
یک روش مناسب برای ساخت پیوندهای p – n ، آلیاژ کردن یک فلز حاوی اتمهای ناخالصی روی نیم رسانایی با ناخالصی مخالف است. این روش در دهه ۱۹۵۰ برای تولید دیود و ترانزیستور مورد استفاده قرار گرفت. به ‌این منظور ، نمونه‌ای که جهت آلیاژ انتخاب شده با ماده مورد نظر پوشش داده می‌شود و بعد از حرارت ، منطقه مذاب ایجاد می‌شود. با کاهش دما ، ناخالصی ماده پایین می‌آید و در مرز مشترک یک ناحیه دوباره رشد یافته ‌از بلور ناخالص تشکیل می‌شود.
پیوندهای نفوذی :
در دهه ۱۹۶۰ روش نفوذی به عنوان یکی از متداولترین روشهای تشکیل پیوند p – n جایگزین روش آلیاژی شد. نفوذ ناخالصیها در یک جامد بر حسب حاملین بار اضافی است. نفوذ نتیجه حرکت تصادفی اتمها بوده و ذرات در جهت کاهش شیب تراکم ناخالصی نفوذ می‌کنند، البته در اینگونه موارد دما بالاست. بنابراین نفوذ ناخالصیهای آلاینده در یک نیم رسانا بسیاری از اتمهای نیم رسانا را از جای خود در شبکه خارج کرده و مکانهای خالی ایجاد می‌کند که توسط ناخالصیها پر می‌شود و بعد از سرد شدن بلور در آنجا می‌مانند.

کاشت یون :

یک جایگزین مناسب برای نفوذ در دماهای بالا کاشت مستقیم یونهای انرژی‌دار در داخل نیم رسانا است. در این روش پرتوی از یونهای ناخالصی آن چنان شتاب می‌گیرد که ‌انرژی جنبشی آن می‌تواند از چندین kev تا چندین Mev متغیر باشد و سپس به سمت سطح نیم رسانا هدایت می‌شود. اتمهای ناخالصی بعد از ورود به بلور انرژی خود را از طریق برخورد ، به شبکه داده و در یک عمق نفوذ متوسط موسوم به برد کاشت متوقف می‌گردند.
پیوندهای فلز نیم رسانا :

بسیاری از ویژگیهای سودمند یک پیوند p – n را با تشکیل اتصال مناسب فلز – نیم رسانا می‌توان بدست آورد. بدیهی است که چنین رویکردی به دلیل سادگی ساخت آن جالب توجه ‌است. پیوندهای فلز – نیم رسانا در یکسوسازی بسیار سریع مفید می‌باشند. وقتی که فلزی به نیم رسانایی متصل می‌شود، انتقال بار تا آنجا ادامه می‌یابد که ترازهای فرعی در حال تعادل هم سطح شوند. به ‌این منظور ، پتانسیل نیم رسانا نسبت به فلز افزایش می‌یابد. پتانسیل اتصال از نفوذ الکترونها از نوار رسانش نیم رسانا به فلز جلوگیری می‌کند.
پیوندهای ناهمگون :
سومین رده مهم از پیوندها شامل پیوند بین نیم رسانای با شبکه تطبیق یافته ولی با شکاف نوار متفاوت است. مرز مشترک بین اینگونه نیم رساناها عاری از نقایص بلوری بوده و می‌تواند بلورهای پیوسته‌ای شامل یک یا چند پیوند ناهمگون بوجود آورد. قابلیت دسترسی به پیوندهای ناهمگون و ساختارهای چند لایه در نیم رساناهای مرکب افق وسیعی از امکان گسترش قطعات الکترونیک را در پیش رو قرار داده‌ است. در پیوندهای ناهمگون ترازهای فرعی دو نیم رسانا را هم سطح می‌کنند و یک فضای خالی برای ناحیه گذر در نظر می‌گیرند، پیوندگاه در نزدیکی طرف با ناخالصی شدیدتر قرار داده می‌شود. با ثابت نگه داشتن شکاف نواری در هر ماده نواحی نوار هدایت و ظرفیت بهم متصل می‌شود.

کاربردها :
قطعات نیم رسانای p – n در صنعت الکترونیک نقش اساسی دارند. از جمله پیوندهای رشد یافته بویژه در مدارهای مجتمع حایز اهمیت است، چرا که توانسته ‌است مدارهای پیچیده شامل هزاران ترانزیستور ، دیود و مقاومت و خازن را روی یک تراشه نیمه رسانا جای دهد. پیوندهای نفوذی در ساخت IC ها نقش اساسی دارند که ‌امکان ساخت هزاران قطعه با پیوند p – n را در یک تراشه سیلیسیمی ‌با اتصالات داخلی مناسب فراهم می‌سازد.

کاشت یون بخصوص در ساخت مدارهای مجتمع سیلیسیم بسیار مورد توجه ‌است. پیوندهای فلز – نیمه رسانا در یکسوسازی بسیار سریع مفید می‌باشد و پیوندهای ناهمگون در ترانزیستورهای دو قطبی ، ترانزیستورهای اثر میدانی و لیزرهای نیمه رسانا مورد توجه‌اند.

تحولات در زمینه ‌افزاره‌های الکترونیکی بسیار زیاد است و مدام در حال تغییر و توسعه می‌باشد. یک روز ترانزیستور دوقطبی مطرح است، امروز افزاره‌های CMOS و در آینده‌ افزاره دیگری مطرح می‌شود، اما آنچه که به زودی تغییر نخواهد کرد، زیر بنای علم الکترونیک است که همیشه ماندنی است.
طریقه ساخت ترانزیستور از نیمه رساناها:
حال اگر پیوند نوع P را با نوع N و دوباره با نوع P پیوند دهیم عنصر بدست امده ترانزیستور نام خواهد داشت.که پرکاربرد ترین و اصلی ترین عنصر در مدارات الکترونیکی ومجتمع میباشد.(در ترانزیستور اگر نوع P را با نوعN و سپس با نوع P پیوند دهیم ترانزیستور بدست امدهPNP نام خواهد داشت و اگر نوع N را با نوع P و دوباره با نوع N پیوند دهیم عنصر بدست امده ترانزیستور NPN نام خواهد داشت که بیشتر از ترانزیستور PNP در صنعت کاربرد دارد)

در اتم هیدروژن الکترون در یک مدار مشخصی دور می زند.
قرار دادن دو الکترون پیش هم باعث تغییر محل اوربیتال ها می شود و باعث ایجاد پیوند کووالانسی خواهد شد. طبق اصل طرد پاولی هر حالت فقط می تواند شامل یک الکترون باشد.
این کار می تواند با اتم های دیگری ادامه یابد. به یاد دارید این

فلز است، نه نیم‌رسانا

ادامه چینش مکعب ها بلور را ایجاد می کند
نيمه رسانايي بنام الماس:
به خاطر زيبايى، كمياب بودن و زمان طولانى توليدشان ارزش فوق العاده اى داشتند، امروزه در آزمايشگاه و در مدت زمانى حدود يك ساعت به وجود مى آيند. اينكه اي

ن دگرگونى چه تاثيرى در صنعت جواهرسازى يا قيمت الماس هاى طبيعى در بازار خواهد داشت هنوز در پرده اى از ابهام است. اما درباره نقش اين الماس هاى آزمايشگاهى در تكنولوژى، شايعه هايى برخاسته از مجامع علمى به گوش مى رسد.
بيشتر از هشتاد درصد از الماس هاى معدنى طبيعى به مصارف صنعتى از قبيل ابزارهاى برش يا مواد ساينده براى تراشكارى و پرداخت ديگر سنگ هاى قيمتى، فلزات، گرانيت و شيشه مى رسند. استفاده از الماس به عنوان نيمه رسانا نيز نيازمند شرايط ويژه اى مثل بالاترين درجه خلوص، بهترين بلورينگى و تعيين اتم ها به لحاظ الكتريكى فعال براى ايجاد گذرگاه الكتريكى در وسيله مورد

نظر است. اما تمامى الماس هاى طبيعى به خاطر نقص ها، ناخالصى ها و ساختار ضعيف شان براى مصارف الكترونيكى نامناسبند. حتى با اينكه الماس هاى مصنوعى و طبيعى داراى كيفيت

جواهرى بسيار ارزشمند هستند، اما ممكن است به خاطر رگه هاى ناچيز ناخالصى ها براى استفاده به عنوان نيمه رسانا مناسب نباشند. در واقع تنها خالص ترين اين سنگ ها در كاربردهاى الكترونيكى پرقدرت از سلفون ها گرفته تا كامپيوترهاى شخصى و خطوط ارتباطاتى قابل استفاده اند.