ساختار نيروگاه هاي اتمي جهان

برحسب نظريه اتمي عنصر عبارت است از يك جسم خالص ساده كه با روش هاي شيميايي نمي توان آن را تفكيك كرد. از تركيب عناصر با يكديگر اجسام مركب به وجود مي آيند. تعداد عناصر شناخته شده در طبيعت حدود ۹۲ عنصر است.
هيدروژن اولين و ساده ترين عنصر و پس از آن هليم، كربن، ازت، اكسيژن و… فلزات روي، مس، آهن، نيكل و… و بالاخره آخرين عنصر طبيعي به شماره ۹۲، عنصر اورانيوم است. بشر توانسته است به طور مصنوعي و به كمك واكنش هاي هسته اي در راكتورهاي اتمي و يا به كمك شتاب دهنده هاي قوي بيش از ۲۰ عنصر ديگر بسازد كه تمام آن ها ناپايدارند و عمر كوتاه دارند و به

سرعت با انتشار پرتوهايي تخريب مي شوند. اتم هاي يك عنصر از اجتماع ذرات بنيادي به نام پرتون، نوترون و الكترون تشكيل يافته اند. پروتون بار مثبت و الكترون بار منفي و نوترون فاقد بار است.
تعداد پروتون ها نام و محل قرار گرفتن عنصر را در جدول تناوبي (جدول مندليف مشخص مي كند. اتم هيدروژن يك پروتون دارد و در خانه شماره ۱ جدول و اتم هليم در خانه شماره ۲ ، اتم سديم در خانه شماره ۱۱ و… و اتم اورانيوم در خانه شماره ۹۲ قرار دارد. يعني داراي ۹۲ پروتون است .
ايزوتوپ هاي اورانيوم

تعداد نوترون ها در اتم هاي مختلف يك عنصر همواره يكسان نيست كه براي مشخص كردن آنها از كلمه ايزوتوپ استفاده مي شود. بنابراين اتم هاي مختلف يك عنصر را ايزوتوپ مي گويند . مثلاً عنصر هيدروژن سه ايزوتوپ دارد: هيدروژن معمولي كه فقط يك پروتون دارد و فاقد نوترون است. هيدروژن سنگين يك پروتون و يك نوترون دارد كه به آن دوتريم گويند و نهايتاً تريتيم كه از دو نوترون و يك پروتون تشكيل شده و ناپايدار است و طي زمان تجزيه مي شود .

ايزوتوپ سنگين هيدروژن يعني دوتريم در نيروگاه هاي اتمي كاربرد دارد و از الكتروليز آب به دست مي آيد. در جنگ دوم جهاني آلماني ها براي ساختن نيروگاه اتمي و تهيه بمب اتمي در سوئد و نروژ مقادير بسيار زيادي آب سنگين تهيه كرده بودند كه انگليسي ها متوجه منظور آلماني ها شده و مخازن و دستگاه هاي الكتروليز آنها را نابود كردند .

غالب عناصر ايزوتوپ دارند از آن جمله عنصر اورانيوم، چهار ايزوتوپ دارد كه فقط دو ايزوتوپ آن به علت داشتن نيمه عمر نسبتاً بالا در طبيعت و در سنگ معدن يافت مي شوند. اين دو ايزوتوپ عبارتند از اورانيوم ۲۳۵ و اورانيوم ۲۳۸ كه در هر دو ۹۲ پروتون وجود دارد ولي اولي ۱۴۳ و دومي ۱۴۶ نوترون دارد. اختلاف اين دو فقط وجود ۳ نوترون اضافي در ايزوتوپ سنگين است ولي از نظر خواص شيميايي اين دو ايزوتوپ كاملاً يكسان هستند و براي جداسازي آنها از يكديگر حتماً بايد از خواص فيزيكي آنها يعني اختلاف جرم ايزوتوپ ها استفاده كرد. ايزوتوپ اورانيوم ۲۳۵ شكست پذير است و در نيروگاه هاي اتمي از اين خاصيت استفاده مي شود و حرارت ايجاد شده در اثر اين شكست را تبديل به انرژي الكتريكي مي نمايند. در واقع ورود يك نوترون به درون هسته اين اتم سبب شكست آن شده و به ازاي هر اتم شكسته شده ۲۰۰ ميليون الكترون ولت انرژي و دو تكه شكست و تعدادي نوترون حاصل مي شود كه مي توانند اتم هاي ديگر را بشكنند. بنابراين در برخي از نيروگاه ها ترجيح مي دهند تا حدي اين ايزوتوپ را در مخلوط طبيعي دو ايزوتوپ غني كنند و بدين ترتيب مسئله غني سازي اورانيوم مطرح مي شود .

ساختار نيروگاه اتمي
به طور خلاصه چگونگي كاركرد نيروگاه هاي اتمي را بيان كرده و ساختمان دروني آنها را مورد بررسي قرار مي دهيم .
طي سال هاي گذشته اغلب كشورها به استفاده از اين نوع انرژي هسته اي تمايل داشتند و حتي دولت ايران ۱۵ نيروگاه اتمي به كشورهاي آمريكا، فرانسه و آلمان سفارش داده بود. ولي خوشبختانه بعد از وقوع دو حادثه مهم تري ميل آيلند (Three Mile Island) در ۲۸ مارس ۱۹۷۹ و فاجعه چرنوبيل (Tchernobyl) در روسيه در ۲۶ آوريل ۱۹۸۶ ، نظر افكار عمومي نسبت به كاربرد اتم براي توليد انرژي تغيير كرد و ترس و وحشت از جنگ اتمي و به خصوص امكان تهيه بمب اتمي در جهان سوم، كشورهاي غربي را موقتاً مجبور به تجديدنظر در برنامه هاي اتمي خود كرد .
نيروگاه اتمي در واقع يك بمب اتمي است كه به كمك ميله هاي مهاركننده و خروج دماي دروني به وسيله مواد خنك كننده مثل آب و گاز، تحت كنترل درآمده است. اگر روزي اين ميله ها و يا پمپ هاي انتقال دهنده مواد خنك كننده وظيفه خود را درست انجام ندهند، سوانح متعددي به وجود مي آيد و حتي ممكن است نيروگاه نيز منفجر شود، مانند فاجعه نيروگاه چرنوبيل شوروي. يك نيروگاه اتمي متشكل از مواد مختلفي است كه همه آنها نقش اساسي و مهم در تعادل و ادامه حيات آن را دارند. اين مواد عبارت اند از :
۱- ماده سوخت متشكل از اورانيوم طبيعي، اورانيوم غني شده، اورانيوم و پلوتونيم است .
عمل سوختن اورانيوم در داخل نيروگاه اتمي متفاوت از سوختن زغال يا هر نوع سوخت فسيلي ديگر است. در اين پديده با ورود يك نوترون كم انرژي به داخل هسته ايزوتوپ اورانيوم ۲۳۵ عمل شكست انجام مي گيرد و انرژي فراواني توليد مي كند. بعد از ورود نوترون به درون هسته اتم، ناپايداري در هسته به وجود آمده و بعد از لحظه بسيار كوتاهي هسته اتم شكسته شده و تبديل

به دوتكه شكست و تعدادي نوترون مي شود. تعداد متوسط نوترون ها به ازاي هر ۱۰۰ اتم شكسته شده ۲۴۷ عدد است و اين نوترون ها اتم هاي ديگر را مي شكنند و اگر كنترلي در مهار كردن تعداد آنها نباشد واكنش شكست در داخل توده اورانيوم به صورت زنجيره اي انجام مي شود كه در زماني بسيار كوتاه منجر به انفجار شديدي خواهد شد .

در واقع ورود نوترون به درون هسته اتم اورانيوم و شكسته شدن آن توام با انتشار انرژي معادل با ۲۰۰ ميليون الكترون ولت است اين مقدار انرژي در سطح اتمي بسيار ناچيز ولي در مورد يك گرم از اورانيوم در حدود صدها هزار مگاوات است. كه اگر به صورت زنجيره اي انجام شود، در كمتر از هزارم ثانيه مشابه بمب اتمي عمل خواهد كرد .

اما اگر تعداد شكست ها را در توده اورانيوم و طي زمان محدود كرده به نحوي كه به ازاي هر شكست، اتم بعدي شكست حاصل كند شرايط يك نيروگاه اتمي به وجود مي آيد . به عنوان مثال نيروگاهي كه داراي ۱۰ تن اورانيوم طبيعي است قدرتي معادل با ۱۰۰ مگاوات خواهد داشت و به طور متوسط ۱۰۵ گرم اورانيوم ۲۳۵ در روز در اين نيروگاه شكسته مي شود و همان طور كه قبلاً گفته شد در اثر جذب نوترون به وسيله ايزوتوپ اورانيوم ۲۳۸ اورانيوم ۲۳۹ به وجود مي آمد كه بعد از دو بار انتشار پرتوهاي بتا (يا الكترون) به پلوتونيم ۲۳۹ تبديل مي شود كه خود مانند اورانيوم ۲۳۵

شكست پذير است . در اين عمل ۷۰ گرم پلوتونيم حاصل مي شود. ولي اگر نيروگاه سورژنراتور باشد و تعداد نوترون هاي موجود در نيروگاه زياد باشند مقدار جذب به مراتب بيشتر از اين خواهد بودو مقدار پلوتونيم هاي به وجود آمده از مقدار آنهايي كه شكسته مي شوند بيشتر خواهند بود. در چنين حالتي بعد از پياده كردن ميله هاي سوخت مي توان پلوتونيم به وجود آمده را از اورانيوم و فرآورده هاي شكست را به كمك واكنش هاي شيميايي بسيار ساده جدا و به منظور تهيه بمب اتمي ذخيره كرد .

۲- نرم كننده ها موادي هستند كه برخورد نوترون هاي حاصل از شكست با آنها الزامي است و براي كم كردن انرژي اين نوترون ها به كار مي روند. زيرا احتمال واكنش شكست پي در پي به ازاي نوترون هاي كم انرژي بيشتر مي شود. آب سنگين (D2O) يا زغال سنگ (گرافيت ) به عنوان نرم كننده نوترون به كار برده مي شوند .
۳- ميله هاي مهاركننده : اين ميله ها از مواد جاذب نوترون درست شده اند و وجود آنها در داخل رآكتور اتمي الزامي است و مانع افزايش ناگهاني تعداد نوترون ها در قلب رآكتور مي شوند. اگر اين ميله ها كار اصلي خود را انجام ندهند، در زماني كمتر از چند هزارم ثانيه قدرت رآكتور چند برابر شده و حالت انفجاري يا ديورژانس رآكتور پيش مي آيد. اين ميله ها مي توانند از جنس عنصر كادميم و يا بور باشند .

۴- مواد خنك كننده يا انتقال دهنده انرژي حرارتي : اين مواد انرژي حاصل از شكست اورانيوم را به خارج از رآكتور انتقال داده و توربين هاي مولد برق را به حركت در مي آورند و پس از خنك شدن مجدداً به داخل رآكتور برمي گردند. البته مواد در مدار بسته و محدودي عمل مي كنند و با خارج از محيط رآكتور تماسي ندارند. اين مواد مي توانند گاز CO2 ، آب، آب سنگين، هليم گازي و يا سديم مذاب باشند .

انواع راکتور
راکتورهای اتمی را معمولا برحسب خنک کننده، کند کننده، نوع و درجه غنای سوخت در آن طبقه بندی می کنند. معروفترین راکتورهای اتمی، راکتورهایی هستند که از آب سبک به عنوان خنک کننده و کند کننده و اورانیوم غنی شده(۲ تا ۴ درصد اورانیوم ۲۳۵) به عنوان سوخت استفاده می کنند. این راکتورها عموما تحت عنوان راکتورهای آب سبک (LWR ) شناخته می شوند. راکتورهای

WWER,BWR,PWR از این دسته اند. نوع دیگر، راکتورهایی هستند که از گاز به عنوان خنک کننده، گرافیت به عنوان کند کننده و اورانیوم طبیعی یا کم غنی شده به عنوان سوخت استفاده می کنند. این راکتورها به گاز – گرافیت معروفند. راکتورهای HTGR,AGR,GCR از این نوع می باشند. راکتور

PHWR راکتوری است که از آب سنگین به عنوان کندکننده و خنک کننده و از اورانیوم طبیعی به عنوان سوخت استفاده می کند. نوع کانادایی این راکتور به CANDU موسوم بوده و از کارایی خوبی برخوردار می باشد. مابقی راکتورها مثل FBR ( راکتوری که از مخلوط اورانیوم و پلوتونیوم به عنوان سوخت و سدیم مایع به عنوان خنک کننده استفاده کرده و فاقد کند کننده می باشد ) LWGR( راکتوری که از آب سبک به عنوان خنک کننده و از گرافیت به عنوان کند کننده استفاده می کند) از فراوانی کمتری برخوردار می باشند. در حال حاضر، راکتورهای PWR و پس از آن به ترتیب PHWR,WWER,BWR فراوانترین راکتورهای قدرت در حال کار جهان می باشند .
به لحاظ تاریخی اولین راکتور اتمی در آمریکا بوسیله شرکت ” وستینگهاوس” و به منظور استفاده در زیر دریائیها ساخته شد. ساخت این راکتور پایه اصلی و استخوان بندی تکنولوژی فعلی نیروگاههای اتمی PWR را تشکیل داد. سپس شرکت جنرال الکتریک موفق به ساخت راکتورهایی از نوع BWR گردید. اما اولین راکتوری که اختصاصا جهت تولید برق طراحی شده، توسط شوروی و در ژوئن

۱۹۵۴در “آبنینسک” نزدیک مسکو احداث گردید که بیشتر جنبه نمایشی داشت، تولید الکتریسیته از راکتورهای اتمی در مقیاس صنعتی در سال ۱۹۵۶ در انگلستان آغاز گردید. تا سال ۱۹۶۵ روند ساخت نیروگاههای اتمی از رشد محدودی برخوردار بود اما طی دو دهه ۱۹۶۶ تا ۱۹۸۵ جهش زیادی در ساخت نیروگاههای اتمی بوجود آمده است. این جهش طی سالهای ۱۹۷۲ تا ۱۹۷۶ که بطور متوسط هر سال ۳۰ نیروگاه شروع به ساخت می کردند بسیار زیاد و قابل توجه است. یک

دلیل آن شوک نفتی اوایل دهه ۱۹۷۰ می باشد که کشورهای مختلف را برآن داشت تا جهت تأمین انرژی مورد نیاز خود بطور زاید الوصفی به انرژی هسته ای روی آورند. پس از دوره جهش فوق یعنی از سال ۱۹۸۶ تاکنون روند ساخت نیروگاهها به شدت کاهش یافته بطوریکه بطور متوسط سالیانه ۴ راکتور اتمی شروع به ساخت می شوند .
کشورهای مختلف در تولید برق هسته ای روند گوناگونی داشته اند. به عنوان مثال کشور انگلستان که تا سال ۱۹۶۵ پیشرو در ساخت نیروگاه اتمی بود، پس از آن تاریخ، ساخت نیروگاه اتمی در این کشور کاهش یافت، اما برعکس در آمریکا به اوج خود رسید. کشور آمریکا که تا اواخر دهه ۱۹۶۰ تنها ۱۷ نیروگاه اتمی داشت در طول دهه های ۱۹۷۰ و ۱۹۸۰ بیش از ۹۰ نیروگاه اتمی دیگر ساخت. این مسئله نشان دهنده افزایش شدید تقاضای انرژی در آمریکاست. هزینه تولید برق هسته ای در مقایسه با تولید برق از منابع دیگر انرژی در امریکا کاملا قابل رقابت می باشد. هم اکنون فرانسه با داشتن سهم ۷۵ درصدی برق هسته ای از کل تولید برق خود درصدر کشورهای جهان قرار دارد. پس از آن به ترتیب لیتوانی(۷۳درصد)، بلژیک(۵۷درصد)، بلغارستان و اسلواکی(۴۷درصد) و سوئد (۸/۴۶ درصد) می باشند. آمریکا نیز حدود ۲۰ درصد از تولید برق خود را به برق هسته ای اختصاص داده است .
گرچه ساخت نیروگاههای هسته ای و تولید برق هسته ای در جهان از رشد انفجاری اواخر دهه ۱۹۶۰ تا اواسط ۱۹۸۰ برخوردار نیست اما کشورهای مختلف همچنان درصدد تأمین انرژی مورد نیاز خود از طریق انرژی هسته ای می باشند. طبق پیش بینی های به عمل آمده روند استفاده از برق هسته ای تا دهه های آینده همچنان روند صعودی خواهد داشت. در این زمینه، منطقه آسیا و

اروپای شرقی به ترتیب مناطق اصلی جهان در ساخت نیروگاه هسته ای خواهند بود. در این راستا، ژاپن با ساخت نیروگاههای اتمی با ظرفیت بیش از ۲۵۰۰۰ مگا وات درصدر کشورها قرار دارد. پس از آن چین، کره جنوبی، قزاقستان، رومانی، هند و روسیه جای دارند. استفاده از انرژی هسته ای در کشورهای کاندا، آرژانتین، فرانسه، آلمان، آفریقای جنوبی، سوئیس و آمریکا تقریبا روند ثابتی را طی دو دهه آینده طی خواهد کرد .

غنی سازی اورانيم
سنگ معدن اورانيوم موجود در طبيعت از دو ايزوتوپ ۲۳۵ به مقدار ۷/۰ درصد و اورانيوم ۲۳۸ به مقدار ۳/۹۹ درصد تشكيل شده است. سنگ معدن را ابتدا در اسيد حل كرده و بعد از تخليص فلز، اورانيوم را به صورت تركيب با اتم فلئور (F) و به صورت مولكول اورانيوم هكزا فلورايد UF6 تبديل مي كنند كه به حالت گازي است. سرعت متوسط مولكول هاي گازي با جرم مولكولي گاز نسبت عكس دارد اين پديده را گراهان در سال ۱۸۶۴ كشف كرد. از اين پديده كه به نام ديفوزيون گازي مشهور است براي غني سازي اورانيوم استفاده مي كنند.در عمل اورانيوم هكزا فلورايد طبيعي گازي شكل را از ستون هايي كه جدار آنها از اجسام متخلخل (خلل و فرج دار) درست شده است عبور مي دهند. منافذ موجود در جسم متخلخل بايد قدري بيشتر از شعاع اتمي يعني در حدود ۵/۲ انگشترم ( ۰۰۰۰۰۰۰۲۵/۰ سانتيمتر) باشد. ضريب جداسازي متناسب با اختلاف جرم مولكول ها است.روش غني سازي اورانيوم تقريباً مطابق همين اصولي است كه در اينجا گفته شد. با وجود اين مي توان

به خوبي حدس زد كه پرخرج ترين مرحله تهيه سوخت اتمي همين مرحله غني سازي ايزوتوپ ها است زيرا از هر هزاران كيلو سنگ معدن اورانيوم ۱۴۰ كيلوگرم اورانيوم طبيعي به دست مي آيد كه فقط يك كيلوگرم اورانيوم ۲۳۵ خالص در آن وجود دارد. براي تهيه و تغليظ اورانيوم تا حد ۵ درصد

حداقل ۲۰۰۰ برج از اجسام خلل و فرج دار با ابعاد نسبتاً بزرگ و پي درپي لازم است تا نسبت ايزوتوپ ها تا از برخي به برج ديگر به مقدار ۰۱/۰ درصد تغيير پيدا كند. در نهايت موقعي كه نسبت اورانيوم ۲۳۵ به اورانيوم ۲۳۸ به ۵ درصد رسيد بايد براي تخليص كامل از سانتريفوژهاي بسيار قوي استفاده نمود. براي ساختن نيروگاه اتمي، اورانيوم طبيعي و يا اورانيوم غني شده بين ۱ تا ۵ درصد كافي است. ولي براي تهيه بمب اتمي حداقل ۵ تا ۶ كيلوگرم اورانيوم ۲۳۵ صددرصد خالص نياز است .
عملا در صنايع نظامي از اين روش استفاده نمي شود و بمب هاي اتمي را از پلوتونيوم ۲۳۹ كه سنتز و تخليص شيميايي آن بسيار ساده تر است تهيه مي كنند. عنصر اخير را در نيروگاه هاي بسيار قوي مي سازند كه تعداد نوترون هاي موجود در آنها از صدها هزار ميليارد نوترون در ثانيه در سانتيمتر مربع تجاوز مي كند. عملاً كليه بمب هاي اتمي موجود در زراد خانه هاي جهان از اين عنصر درست مي شود.روش ساخت اين عنصر در داخل نيروگاه هاي اتمي به صورت زير است: ايزوتوپ هاي اورانيوم ۲۳۸ شكست پذير نيستند ولي جاذب نوترون كم انرژي ( نوترون حرارتي

هستند. تعدادي از نوترون هاي حاصل از شكست اورانيوم ۲۳۵ را جذب مي كنند و تبديل به اورانيوم ۲۳۹ مي شوند. اين ايزوتوپ از اورانيوم بسيار ناپايدار است و در كمتر از ده ساعت تمام اتم هاي به وجود آمده تخريب مي شوند. در درون هسته پايدار اورانيوم ۲۳۹ يكي از نوترون ها خودبه خود به پروتون و يك الكترون تبديل مي شود.بنابراين تعداد پروتون ها يكي اضافه شده و عنصر جديد را كه ۹۳ پروتون دارد نپتونيم مي نامند كه اين عنصر نيز ناپايدار است و يكي از نوترون هاي آن خود به خود به پروتون تبديل مي شود و در نتيجه به تعداد پروتون ها يكي اضافه شده و عنصر جديد كه ۹۴

پروتون دارد را پلوتونيم مي نامند. اين تجربه طي چندين روز انجام مي گيرد .

تعاریف اصطلاحات در فیزیک هسته ای
ویژه هسته: یک هسته خاص با اعداد پروتونی (Z) و نوترونی (N) معین را گویند .
ایزوتوپ ها: ویژه هسته هایی با پروتون های یکسان و نوترون های مختلف را گویند.مثال:ایزوتوپ هیدروژن ۲۱ H و ۳۱ H می باشند .
ایزوتون ها: ویژه هسته هایی با نوترون برابر و پروتون مختلف را گویند .
ایزوبارها: ویژه هسته هایی با عدد جرمی A ی برابر (A=Z+N) را می گویند .
ایزومر: ویژه هسته هایی در حالت بر انگیخته با نیم عمر قابل اندازه گیری را ایزومر می نامند .
نوکلئون: ذرات تشکیل دهنده هسته) نوترون یا پروتون ) نوکلئون نام دارند .
مزون ها: ذراتی هستند با جرمی بین جرم الکترون و جرم پروتون . شناخته شده ترین مزون ها عبارتند از: مزون های پی که نقش مهمی در نیروهای هسته ای باز می کند و مزون های مو که در پدیده های پرتو کیهانی مهم است .
پوزیترون: الکترون با بار مثبت به عبارتی ذره ای با جرمی برابر جرم الکترون و باری برابر بار الکترون با علامت مثبت .
فوتون: کوانتوم تابش الکترومغناطیسی که معمولاً بصورت نور اشعه ایکس یا اشعه گاما ظاهر می شودبه عبارت دیگر کوچکترین ذرات سازنده نور فوتون ها هستند .
اسپین: صرفنظر از انرژی مربوط به چرخش الکترون به دور هسته اتمی الکترون نیز انرژی اضافی دیگری دارد که مربوط به چرخش حول محور خود می باشد .علاوه بر الکترون ذراتی دیگر مثل پروتون ، نوترون و فنون ها نیز به نوبه خود دارای اسپین می باشد .

آب سنگین: اصطلاحی که معمولا برای مولکول آب دارای دو اتم هیدروژن سنگین بکار می رود در این مولکول دو اتم دوتریوم بجای دو اتم هیدروژن جایگزین می شود (D2o). آب سنگین دارای خواص غیر عادی بوده و در راکتور های هسته ای نقش ایفا می کنند .
بتاترون: یک شتاب دهنده چرخه ای است این دستگاه شامل یک محفظه حلقوی بدون هوا است.که بین قطبهای یک الکترومغناطیس جای دارد یک چشمه الکترونی نیز داخل آن محفظه قرار گرفته است .
سوخت هسته ای پلوتنیم: یک عنصر شیمیائی یا عدد اتمی ۹۲ و جرم اتمی ۲۳۹ و یک فلز سمی است. به سادگی در هوا آتش می گیرد. کاربرد عمده پلوتونیم در راکتورهای هسته ای ، بمب های هسته ای ، چشمه ذره آلفا و اشعه گاما در پزشکی است .

کوانتا (Cuonta ): در سال ۱۹۰۱ فیزیکدان معاصر آلمانی ماکس پلانک پیشنهاد نمود که در انتقالات فیزیکی و تاثیرات متقابل اتم های ماده ، انرژی بصورت مقادیر مجزا یا “بسته های” کوچک نشر یافته و یا جذب می شوند. در نتیجه مطابق این تئوری، انرژی دارای مقادیر پیوسته ای نمی باشد. این قسمتهای کوچک نام کوانتوم بخود گرفت .
لباسهای بادی (Pneumatic suit ): لباسهای مخصوص که

برای کار در هوای آلوده به مواد رادیو اکتیو ) بخارهای گازها ، ذرات بسیار ریز) بکار می رود .
مهندسی هسته ای:شاخه ای از مهندسی مواد که انرژی هسته ای و نیز موارد استفاده از آن را برای احتیاجات کلی و دفاعی مطالعه و بررسی می کند .
نوترنیو (Neutrino): ذراتی هستند خنثی که تشخیص و حتی به تله انداختن آنها خیلی مشکل است ضمن واپاشی بتای هسته های اتمی همراه الکترون یا پوزیترون گسیل می شود .
نیم عمر (Half Life): یکی از مهمترین کمیت های مشخصه مواد رادیو اکتیو نیم عمر آنها می باشد و طبق تعریف مدت زمانی است که فعالیت چشمه به نصف مقدار اولیه می رسد .

راکتورهای هسته ای: وسیله که درآن واکنش شکافت زنجیری کنترل شده انجام می شود. راکتور هسته ای نام دارد. اورانیوم و پلوتونیم به عنوان سوخت هسته ای به کار می رود .
پرتوهای کیهانی:تابش های کیهانی عبارتست از ذرات مثبت تند ( پروتون ها ) و شماری ذرات آلفا و هسته های دیگر ذرات اولیه. پرتوهای کیهانی دارای انرژی عظیم از مرتبه میلیارد الکترون ولت است گاهی این انرژی به مقادیر حیرت آور از مرتبه ۲۱ ev 10 می رسد این پرتوها قادرند تا عمق اقیانوس ها و زمین هم نفوذ کنند .
جرم سکون (Rest Mass): جرم یک ذره ای که سرعت آن صفر بوده و یا صفر می شود را جرم سکون گویند .

جرم بحرانی سوخت هسته ای (Critical Mass): جرم بحرانی برای انجام یک واکنش زنجیری شکست عبارتست از کمترین مقدار سوخت هسته ای بطوریکه هر دوره نوترون باعث تولید یک دوره بعدی یا همان تعداد نوترون گردد یعنی کاهش نوترون در سوخت هسته ای بطور کامل جبران شود .
تعریف جرم بحرانی: کمترین مقدار لازم جرم فیزیکی ماده سوختنی جهت سوختن را جرم بحرانی گویند
چرا سقف نیروگاه های اتمی گنبدی شکل است؟
تعریف گنبد
اگر شبکه ای در دو جهت دارای انحنا باشد گنبد نامیده می شود شاید رویه یک گنبد بخشی از یک کره یا یک مخروط یا اتصال چندین رویه باشد . گنبد ها سازه هایی با صلبیت بالا می باشند و برای دهانه های بسیار بزرگ تا حدود ۲۵۰ متر مورد استفاده قرار می گیرند . ارتفاع گنبد باید بزرگتر از ۱۵% قطر پایه گنبد باشد . گنبدها دارای مرکز هستند

نمونه گنبد :

مثالهایی از این گنبد ها را در شکل زیر می بینید :

گنبد شکلa یک نوع گنبد از نوع دنده ای می باشد . در صورتیکه تعداد دنده ها زیاد باشد باید به مسئله شلوغی اعضا در در راس گنبد توجه شود که برای اجتناب از این مسئله بهتر است که برخی از دنده های نزدیک راس حذف شود (شکل b )
گنبد دیگری به نام اشفدلر (مهندس آلمانی ) در شکل c نشان داده شده است که تعداد زیادی از این نوع گنبدها بعد از قرن ۱۹ توسط اشفدلر و دیگران ساخته شده است . از ایرادات این گنبد می توان به مسئله شلوغی اعضا در راس اشاره کرد ،که برای حل این مشکل همان راه حل بالا ارائه می شود (شکل d)
نمونه دیگری از گنبدها گنبد “لملا ” است .این گنبد را می توان به نوع ترکیبی از یک یا چند حلقه که با یکدیگر متقاطع هستند ،دانست (شکل های e-f )
شکل های g و h نوع دیگری از خانواده ی گنبدها را به نام گنبدهای دیامتیک نشان می دهد .
در شکل های iوj نمونه دیگری از گنبد های حبابی ملاحظه می کنید .
در شکل های k و l نمونه دیگری از گنبد ها به نا م گنبدهای ژئودزدیک ملاحظه می شود
اتصالات در گنبد های دنده ای و اشفلدر حتما صلب هستند .از لحاظ پخش منظم نیرو ، گنبد هاس ژئودزدیک ، دیامتیک و حبابی بسیار مناسب هستند .

از امتیازات سقف های گنبدی ذخیره مقاومتی بیشتر، به دلیل داشتن درجات نامعینی بالا، در مقایسه با سایر سازه های متداول دارد و همچنین سختی و صلبیت زیاد قابلیت استثنایی برای حمل بارهای بزرگ متمرکز و غیر متقارن می باشد .
استفاده از سقف های گنبدی شکل در نیروگاه های هسته ای

سوخت یک نیروگاه هسته ای ، اورانیوم است. اورانیوم عنصری است که در اکثر مناطق جهان از زیرزمین استخراج می شود. اورانیوم بعداز مرحله کانه آرایی بصورت قرصهای بسیار کوچکی در داخل میله های بلند قرار گرفته و داخل رآکتور نیروگاه نصب می شوند. کلمه «Fission» به معنی شکافت است. در داخل رآکتور یک نیروگاه اتمی ، اتمهای اورانیوم تحت یک واکنش زنجیره ای کنترل شده ، شکافته می شوند. در یک واکنش زنجیره ای ، ذرات حاصل از شکافت اتم به سایر اتمهای اورانیوم

برخورد کرده و باعث شکافت آنها می گردند. هریک از ذرات آزاد شده مجدداً باعث شکافت سایر اتمها در یک واکنش زنجیره ای می شود. درنیروگاههای هسته ای ، معمولاً از یک سری میله های کنترل جهت تنظیم سرعت واکنش زنجیره ای استفاده می گردد. عدم کنترل این واکنشهامی تواند منجربه تولید بمب اتم شود. اما در بمب اتم ، تقریباً ذرات خالص اورانیوم ۲۳۵ یا پلوتونیوم (باشکل و جرم معینی) باید با نیروی زیادی در کنارهم قرار گیرند. چنین شرایطی در یک رآکتور هسته ای وجود ندارد.
واکنشهای زنجیره ای همچنین باعث تولید یک سری مواد رادیواکتیو می شوند. این مواد در صورت رهایی می توانند به مردم آسیب برسانند. بنابراین آنها را به شکل جامد نگهداری می کنند. این مواد در گنبدهای بتنی بسیار قوی نگهداری می شوند تا در صورت بروز حوادث مختلف ، خطری بوجود نیاید (به تصویر اول توجه کنید).
واکنشهای زنجیره ای باعث تولید انرژی گرمایی می شوند. این انرژی گرمایی برای جوشاندن آب در قلب رآکتور مورد استفاده قرار می گیرد. بنابراین ، به جای سوزاندن سوخت ، در نیروگاههای هسته ای ، اتمها از طریق واکنش زنجیره ای شکافته شده و انرژی گرمایی تولید می کنند. این آب از اطراف رآکتور به قسمت دیگری از نیروگاه فرستاده می شود.(تصویر دوم). در این قسمت که مبدل گرمایی نامیده می شود، لوله های پر از آب حرارت داده شده و بخار تولید می کنند. سپس بخار حاصله باعث گردش توربین و درنتیجه تولید برق میشود.

آیا می دانید :سقف های گنبدی بسیار محکم تر از سقف های معمولیست :
براي درک ساده تر موضوع، تصور کنيد وقتي يک خودکار را روي کاغذ قرار مي دهيد و کاغذ را بلند مي کنيد ، کاغذ نمي تواند نيروي وزن خودکار را تحمل کند ، اما اگر همان کاغذ را کمي انحنا دهيد خواهيد ديد کاغذ انحنا داده شده تحمل وزن چند خودکار ديگر را هم دارد .
به گزارش “خبرگزاری مهر”

رئیس شرکت دولتی ایمنی امور نظارت فنی روسیه گفت که نیرو گاه هسته ای توسط روسیه در بوشهر در حال ساخت است بدون هیچ تردیدی ایمن است و همه استانداردهای بین المللی معاصر را برآورده می کند .
ولادیمیر کوزلوف رئیس شرکت دولتی ایمنی امور نظارت فنی روسیه (Rostekhnadzor) در گفتگویی با خبرگزاری ایتارتاس گفت که مسئله اصلی در باره ایمنی نیروگاه بوشهر حفاظت آن در مقابل تاثیرات جوی است .
وی گفت : نیرو گاه اتمی بوشهر باید به طور موثر در یک صدم درصد رطوبت و چهل و پنج درجه دمای هوا کار کند . مثل اینکه در یک حمام روسی دائمی قرار داشته باشد .
این کارشناس روسی گفت : این نیروگاه همچنین تمامی اصول ایمنی دیگر را برآورده می کند و بویژه در مقابل زلزله مقاوم است ومی تواند سقوط یک هواپیما از ارتفاع چند هزار کیلو متری را تحمل کند و از تهدیدات تروریستی نیز حفاظت می شود .

وی با بیان این مطلب که واحد های انرژی اتمی این نیرو گاه که توسط روسیه ساخته شده است یکی از بهترین واحدهایی است که در جهان ساخته شده گفت : در نیرو گاه بوشهر که از هر ده کارشناس آن پنج تن آنها روسی هستند به طور دائم کیفیت این نیرو گاه در برابر هرگونه نشت و سوراخ کنترل می کنند و هر ساله دهها کارشناس روسی از ساختمان این سایت بازدید می کنند .
رئیس شرکت (Rostekhnadzor) گفت ما برتولید تمامی تجهیزات لازم نظارت کامل داریم و بخشهایی ازاین تولیدات را به ۱۳۰ شرکت روسی که در طرحهای بوشهر سهیم هستند واگذار کردیم .

شایان ذکر است ولادیمیر کوزلوف که شرکت وی قراردادهای جداگانه ای با ایران برای کمک به امور بازرسی هسته ای این نیرو گاه امضاء کرده است و این قرارداد در سال ۱۹۹۶ به امضاء رسیده و از همان سال تا سال ۲۰۰۸ اعتبار دارد . طبق این قرارداد کارشناسان روسی بازرسی از نقشه و نصب نیروگاه بوشهر ، آموزش پرسنل و تایید اسناد کنترل کیفی لازم را انجام می دهند.

SMES یا ابرسانای ذخیره کننده انرژی مغناطیسی چیست؟

SMES
یا ابرسانای ذخیره کننده انرژی مغناطیسی چیست؟
مزایا و تاثیر آن بر پایداری ژنراتور سنکرون نیروگاهی
ابررسانایی
كاربردهاي ابر رسانايي چیست ؟۶SMES
SMES اولین سیستم
SMES و مدل سازی آن
چگونگی انجام کار
عملکرد سیستم SMES
میزان ذخیره انرژی
کاربرد SMESدر بهبودLFC
بهبود پایداری گذرا با استفاده از SMES
پیوست
SMES یا ابرسانای ذخیره کننده انرژی مغناطیسی چیست؟
مزایا و تاثیر آن بر پایداری ژنراتور سنکرون نیروگاهی
مقدمه:
در چند دهه ی اخیر سیستم های ذخیره ساز انرژی با انگیزه های متفاوتی به منظور بهبود عملکرد سیستم قدرت، مورد توجه قرار گرفته اند.بطورمعمول در سیستم قدرت بین قدرتهای الکتریکی تولیدی و مصرفی تعادل لحظه ای برقرار است و هیچگونه ذخیره انرژی در آن صورت نمی گیرد .بنابراین لازم است میزان تولید شبکه، منحنی مصرف منطقه را تغقیب کند. واضح است بهره برداری از سیستم بدین طریق، با توجه به شکل متعارف منحنی مصرف غیر اقتصادی است.

استفاده از ذخیره ساری های انرژی با ظرفیت بالا به منظور تراز ساری منحنی مصرف و افزایش ضریب بار، از اولین کاربردهای ذخیره انرژی در سیستم قدرت در جهت بهره برداری اقتصادی می باشد.
علاوه بر این،اغتشاش

های مختلف در شبکه ( تغییرات ناگهانی بار، قطع و وصل خطوط انتقال،…) خارج شدن سیستم از نقطه تعادل را به دنبال دارد. در این شرایط ابتدا از محل انرژی جنبشی محور ژنراتورهای سنکرون انرژی برداشت می شود، سپس حلقه های کنترل سیستم فعال شده و تعادل را بر قرار می سازند. این روند، نوسان متغیرهای مختلف مانند فرکانس، توان الکتریکی روی خطوط و…را موجب می شود که مشکلات مختلفی را در بهره برداری از سیستم قدرت به دنبال دارد. هر گاه در سیستم مقداری انرژی ذخیره شده باشد،با مبادله سریع آن با شبکه در مواقع مورد نیاز به حد قابل توجهی می توان مشکلات فوق را کاهش داد.به عبارت دیگر، ذخیره ساز انرژی را می توان در بهبود عملکرد دینامیکی سیستم نیز بکار برد.

از اوایل دههً هفتاد مفهوم ذخیره سازی انرژی الکتریکی به شکل مغناطیسی مورد توجه قرار گرفت. با ظهور تکنولژی ابر رسانایی، کاربردهای گوناگونی برای این پدیده فیزیکی مطرح شد. از معروف ترین این کاربردها می توان به SMES اشاره کرد. در SMES انرژی در یک سیم پیج با اندوکتاس بزرگ که از ابر رسانا ساخته شده است، ذخیره می شود. ویژگی ابر رسانا یی سیم پیچ موجب می شود که راندمان رفت و برگشت فرایند ذخیره انرژی بالا و در حدود ۹۵% باشد. ویژگی راندمان بالای SMES آن را از سایر تکنیکهای ذخیره انرژی متمایز می کند. همچنین از آنجایی که در این تکنیک انرژی از صورت الکتریکی به صورت مغناطیسیو یا بر عکس تبدیل می شود، SMES دارای پاسخ دینامیکی سریع می باشد. بناراین می تواند در جهت بهبود عملکرد دینامیکی

نیز بکار رود. معمولا واحدهای ابر رسانایی ذخیره سازی انرژی را به دو گونه ظرفیت بالا MWh 500 جهت ترا سازی منحنی مصرف، و ظرفیت پایین (چندین مگا ژول) به منظور افزایش میرایی نوسانات و بهبود پایداری سیستم می سازند.
بطور خلاصه مهم ترین قابلیت SMESجدا سازی و استقلال تولید از مصرف است که این امر مزایای متعددی از قبیل بهره برداری اقتصادی، بهبود عملکرد دینامیکی و کاهش آلودگی را به دنبال دارد.
ابررسانایی:
در سال ۱۹۰۸ وقتي كمرلينگ اونز هلندي در دانشگاه ليدن موفق به توليد هليوم مايع گرديد حاصل شد كه با استفاده از آن توانست به درجه حرارت حدود يك درجه كلوين برسد.
يكي از اولين بررسي هايي كه اونز با اين درجه حرارت پايين قابل دسترسي انجام داد مطالعه تغييرات مقاومت الكتريكي فلزات بر حسب درجه حرارت بود. چندين سال قبل از آن معلوم شده بود كه مقاومت فلزات وقتي دماي آنها به پايين تر از دماي اتاق برسد كاهش پيدا مي كند.

اما معلوم نبود كه اگر درجه حرارت تا حدود كلوين تنزل يابد مقاومت تا چه حد كاهش پيدا مي كند. آقاي اونز كه با پلاتينيم كار مي كرد متوجه شد كه مقاومت نمونه سرد تا يك مقدار كم كاهش پيدا مي كرد كه اين كاهش به خلوص نمونه بستگي داشت. در آن زمان خالص ترين فلز قابل دسترس جيوه بود و در تلاش براي بدست آوردن رفتار فلز خيلي خالص اونز مقاومت جيوه خالص را اندازه گرفت.او متوجه شد كه در درجه حرارت خيلي پايين مقاومت جيوه تا حد غير قابل اندازه گيري

كاهش پيدا مي كند كه البته اين موضوع زياد شگفت انگيز نبود اما نحوه از بين رفتن مقاومت غير منتظره مي نمود.موقعي كه درجه حرارت به سمت صفر تنزل داده مي شود به جاي اينكه مقاومت به ارامي كاهش يابد در درجه حرارت ۴ كلوين ناگهان افت مي كرد و پايين تر ازاين درجه حرارت جيوه هيچگونه مقاومتي از خود نشان نمي داد. همچنين اين گذار ناگهاني به حالت بي مقاومتي فقط مربوط به خواص فلزات نمي شد و حتي اگر جيوه ناخالص بود اتفاق مي افتاد.آقاي اونز قبول كرد كه پايين تر از ۴ كلوين جيوه به يك حالت ديگري از خواص الكتريكي كه كاملا با حالت شناخته شده قبلي متفاوت بود رفته است و اين حالت تازه (( حالت ابر رسانايي )) نام گرفت.
بعدا كشف شد كه ابررسانايي را مي توان از بين برد ( يعني مقاومت الكتريكي را مي توان مجددا بازگردانيد.) و در نتيجه معلوم شد كه اگر يك ميدان مغناطيسي قوي به فلز اعمال شود اين فلز در حالت ابررسانايي داراي خواص مغناطيسي بسيار متفاوتي با حالت درجه حرارتهاي معمولي مي باشد.
تاكنون مشخص شده است كه نصف عناصر فلزي و همچنين چندين آلياژ در درجه حرارت هاي پايين ابر رسانا مي شوند. فلزاتي كه ابررسانايي را در درجه حرارت هاي پايين از خود نشان مي دهند ( ابر رسانا ) ناميده مي شوند. سالهاي بسياري تصور مي شد كه تمام ابررسانا ها بر طبق يك اصول فيزيكي مشابه رفتار مي كنند. اما اكنون ثابت شده است كه دو نوع ابررسانا وجود دارد كه به نوع I و II مشهور مي باشد. اغلب عناصري كه ابررسانا هستند ابررسانايي از نوع I را از خود نشان مي دهند.در صورتي كه آلياژها عموما ابررسانايي از نوع II را از خود نشان مي دهند. اين دو نوع چندين خاصيت مشابه دارند. اما رفتار مغناطيسي بسيار متفاوتي از خود بروز مي دهند.

پديده ي ابر رساناييدر تكنولوژي از توانايي گستردهاي بر خوردار است زيرا بر پايه ي اين پديده بارهاي الكتريكي مي توانند بدون تلفات گرمايي از يك رسانا عبور كنند. به طور مثال جريان القا شده در يك حلقه ي ابر رسانا بدون وجود هيچ باطري در مدار به مدت چند سال بدون كاهش باقي مي ماند.براي نمونه در واشنگتن از يك خلقه ابر رساناي بزرگ براي ذخيره كردن انرژي الكتريكي در ت كوما استفاده مي شود. ذخيره ي انرژي در اين حلقه تا ۵ مگاوات بالا مي رود و انرژي در مدت مورد نظر آزاد مي شود.
عمده مشكل ايجاد كردن شرايط براي اين پديده دماي بسيار پايين آن مي باشد كه بايد دماهاي بسيار پايين را محيا كرد . اما در سال ۱۹۸۶ مواد سراميكي جديدي كشف شد كه در دماهاي بالاتري توا نايي ابر رسانايي را داشته باشد. تا اكنون در دماي ۱۳۸ درجه كلوين اين امر ميسر شده است .
كاربردهاي ابر رسانايي :
كاربردهاي زيادي را براي ابررساناهادر نظر گرفته است بعنوان مثال استفاده از ابر رساناها باعث خواهد شدكه مدار ماهواره هاي چرخنده به دور زمين با دقت بسياربالايي كنترل شوند . خاصيت اصلي ابر رساناها به دليل نداشتن مقاومت الكتريكي امكان انتقال جريان الكتريكي – حجم كوچكي از ابررسانا است . بهمين خاطر اگر بجاي سيمهاي مسي از ابر رساناها استفاده شود ،موتورهاي فضاپيماها تا ۶ برابر نسبت به موتورهاي فعلي سبكتر خواهند شد و باعث مي شود كه وزن و فضاپيما بسيار كاهش يابد .
از ديگر زمينه هايي كه ابررساناها مي توانند نقش اساسي در آنها بازي مي كنند مي توان كاوشهاي بعدي انسان از فضارا نام برد . ابررساناها بهترين گزينه براي توليد وانتقال بسياركارآمد انرژي الكتريكي هستند و طي شبهاي طولاني ماه كه دما تا ۱۷۳- درجه سانتي گراد پايين مي آيد و طي ماههاي ژانويه تا مارس دستگاههاي MRI ساخته شده ازسيمهاي ابررسانا ، ابزار تشخيص دقيق وتوانمندي در خدمت سلامت خدمه فضاپيما خواهد بود . و همچنين ساخت ابر كامپيوتر هاي بسيار كوچك و كم مصرف مي باشد.

چیست ؟SMES
Superconducting Mgnetic Enrgy Storage

ابرسانای ذخیره کننده انرژی مغناطیسی
وسیله ای است برای ذخیره کردن انرژی و بهبود پایداری سیستم و کم کردن نوسانات. این انرژی توسط میدان مغناطیسی که توسط جریان مستقیم ایجاد می شود ذخیره می شود.
این وسیله می تواند هزاران بارش

ارژ و دشارژ شود بدون اینکه تغییری در مغناطیس آن ایجاد شود
SMES اولین سیستم
اولین نظرییه ها در مورد این سیستم توسط فرریهFerrier در سال ۱۹۶۹ مطرح شد او سیم پچی بزرگ مارپیچی که توانایی ذخیره انرژی روزانه کل فرانسه داشت پیشنهاد کرد. که به خاطر هزینه ساخت بسیار زیاد آن کسی پیگیری نکرد.
در سال ۱۹۷۱ تحقیقات در آمریکا در دانشگاه ویسکانسین برای فهمیدن بحثهای بنیادی اثر متقابل مابین انرژی ذخیره شده و سیستم های چند فازه منجربه ساخت اولین دستگاه شد.
هیتاچی در سال ۱۹۸۶ یک دستگاه SMES به میزان ۵MJ را ساخت وآزمایش کرد.در سال ۱۹۹۸ یک SMES 100KWH توسط ISTEC در ژاپن ساخته شد.
SME و مدل سازی آن
یک واحد SMES که در سیستمهای قدرت بکار گزفته میشود از یک سیم پیچ بزرگ ابررسانا و یک سیستم سرد کننده هلیم به منظور نگهداری دمای هلیم در زیر دمای بحرانی تشکیل شده است. سیم پیچ ابررسانا از طریق دو مبدل AC/DC شش تریسیتور و یک ترانسفورماتور قدرت سه سیم پیچه کاهنده به سیستم قدزت متصل است.
در شکل اندوکتانس L به عنوان بار در قسمت DC در منطقه کنترل دما قرار می گیرد.و مبدلهای AC/DC در خارج این منطقه قرار می گیرند.
با کنترل زاویه آتش تریسیتورها ولتاژ DC دو سر سیم پیچ ابر رسانا را میتوان به طور پیوسته در بازه ی وسیعی از مقادیر ولتاژهای مثبت ومنفی کنترل کرد. اگز از تلفات جزیی سیستم صرفنظر کنیم بر اساس تئوری مبدل ها داریم:

که در آن Ed ولتاژ دو سرسیم پیچ Ed ولتاژماکزیمم دو سر سیم پیچ در بی باری ، Idجریان سیم پیچ ابر رسانا ، xc راکتانس کموتاسیون همگی بر حسب pu و a زاویه آتش می باشد مشخصه کاری SMES دارای دو حالت یکسوسازی و اینورتری می باشد . معمولاً این پریود در زاویه آتش صفر یعنی حداکثر ولتاژ اجام می شود.در حالت اینورتری انرژی مغناطیسی ذخیره شده در سیم پیچ به شکل الکتریکی وارد شبکه می گردد.

شکل زیر بلوک دیاگرام مدل SMES را نشان می دهد . ولتاژ Ed دو سر سیم سیم پیچ به عنوان عامل کنترل توان مورد استفاه قرار می گیرد. بسته به نوع کاربرد SMES یکی از کمیت های تغییر فرکانس شبکه تغییر سرعت ماشین سنکرون ، تغییرات ولتاژ شبکه و… به عنوان ورودی به SMES انتخاب می شود . خروجی SMES نیز توان دریافتی می باشد.در این شکل Tdc تاخیر زمانی مبدل،Kf بهره حلقه کنترل و L اندوکتانس سیم پیچ می باشد.معمولا پس از تخلیه انرژی SMES زمان زیادی لازم است تا جریان به حالت اولیه بر می گردد،به منظور رفع این مشکل میتوان از یک فیدبک تغییر جریان استفاده کرد.بدین ترتیب SMES را در مطالعات دینامیکی می توان با این مدل غیر خطی مرتبه دوم توصیف کرد.

چگونگی انجام کار
• ابررسانایی
اجسام ابررسانا ظرفیت ذخیزه را افزایش می دهند ،در دماهای پایین اجسام ابررسانا در مقابل عبور جریان از خود مقاومتی نشان نمی دهند .به هر حال کاربرد ابرسانا ها توسط عواملی چون وضعیت کاهش دما ، میدان مغناطیسی بحرانی و چگالی جریان بحرانی محدود میشود.

SMES انرژی الکتریکی را در میدان مغناطیسی ناشی از جریانDC جاری در سیم پیچ ذخیر می شود. اگر سیم پیچ از موادی مثل مس باشد انرژی مغناطیسی زیادی در سیم به خاطر مقاومت بیهوده تلف می شود ؛ اگر سیم از جنس ابر رسانا باشد انرژی در حالت (( پایا)) وتا زمانی که لازم است ذخیره شود. ابررساناها در مقابل جریان DC مقاومت ندارند و به همین دلیل در دمای پایین تلفات اهمی ا محو میکنند در کابرد AC جریان الکتریکی هنوز تلفات دارد اما این تلفات میتواند با طراحی مناسب کاهش پیدا کند. برای هر دوحالت کاری AC DC انرژی زیادی ذخیره میشود.
بهینه ترین دما برای دستگاهها ۷۷-۵۰ کلوین است

انرژی ذخیره شده در سیم پیچ برابر است با :

حجم چگالی انرژی :

تاريخچه پیل سوختی
اگر چه پيل‌سوختي به تازگي به عنوان يكي از راهكارهاي توليد انرژي الكتريكي مطرح شده است ولي تاريخچه آن به قرن نوزدهم و كار دانشمند انگلیسی سرویلیام گرو بر مي‌گردد. او اولين پيل‌سوختي را در سال ۱۸۳۹ با سرمشق گرفتن از واکنش الکترولیز آب، طی واکنش معکوس و در حضور کاتالیست پلاتین ساخت .

واژه “پيل‌سوختي” در سال ۱۸۸۹ توسط لودويک مند و چارلز لنجر به كار گرفته شد. آنها نوعي پيل‌سوختي که هوا و سوخت ذغال‌سنگ را مصرف مي‌کرد، ساختند. تلاش‌هاي متعددي در اوايل قرن بيستم در جهت توسعه پيل‌سوختي انجام شد که به دليل عدم درک علمي مسئله هيچ يک موفقيت آميز نبود. علاقه به استفاده از پیل سوختی با کشف سوخت‌های فسیلی ارزان و رواج موتورهای بخار کمرنگ گردید.

فصلي ديگر از تاريخچه تحقيقات پيل‌سوختي توسط فرانسيس بيكن از دانشگاه كمبريج انجام شد. او در سال ۱۹۳۲ بر روي ماشين ساخته شده توسط مند و لنجر اصلاحات بسياري انجام داد. اين اصلاحات شامل جايگزيني كاتاليست گرانقيمت پلاتين با نيكل و همچنين استفاده از هيدروكسيدپتاسيم قليايي به جاي اسيد سولفوريك به دليل مزيت عدم خورندگي آن مي‌باشد. اين اختراع كه اولين پيل‌سوختي قليايي بود، “ Bacon Cell ” ناميده شد. او ۲۷ سال تحقيقات خود را ادامه داد تا توانست يك پيل‌سوختي كامل وكارا ارائه نمايد. بيكون در سال ۱۹۵۹ پيل‌سوختي با توان ۵ كيلووات را توليد نمود كه مي‌توانست نيروي محركه يك دستگاه جوشكاري را تامين نمايد.