کار، انواع انرژی و قانون بقای انرژی
انرژي جنبشي گازها

مقدمه
کار و انرژی از مفاهیم بسیار مهم و اساسی فیزیک است. انرژی به معنی توانایی انجام دادن کار تعریف شده است. اگر جسمی بتواند کار انجام دهد، دارای انرژی است. اما خود کار چیست؟ طبق تعریف کار برابر است با حاصلضرب داخلی بردار نیرو در بردار جابجایی، یعنی
W=F.d

جسمی را از ارتفاعی رها کنید، نیروی وزن آن جابجا می شود، بنابراین زمین (که نیروی وزن را به جسم اعمال کرده) روی آن کار انجام داده است. حال گلوله یک فلزی را نظر بگیرید که با سرعت در حال حرکت است و به توپ ساکنی برخورد کرده و آن را پرتاب می کند. گلوله روی توپ کار انجام داده است، بنابراین گلوله دارای انرژی بوده است. اگر گلوله ساکن بود توانایی انجام کار نداشت، پس دارای انرژی نبود

انرژی دارای انواع مختلف، انرژی مکانیکی، انرژی الکتریکی، انرژی شیمیایی، انرژی گرمایی، انرژی هسته ای … می باشد. در سال ۱۸۴۷ فون هلمهولتز قانون بقای انرژی را اعلام داشت. بر طبق این قانون، انرژی را می توان از صورتی به صورت دیگر تبدیل کرد، اما نمی توان آنرا نابود یا خلق کرد. هرگاه به نظر آید که در جایی مقداری انرژی ناپدید شده است، می بایستی در جای دیگر، همین مقدار انرژی ظاهر شود. این قانون را قانون اول ترمودینامیک نیز می نامند. تقریباً یکصد سال قبل از هلمهولتز، لاووزیه شیمیدان فرانسوی قانون بقای جرم را بیان داشته بود. طبق قانون بقای جرم،

ماده نه به وجود می آید و نه از بین می رود و در طی یک فرایند شیمیایی مجموع جرم مواد شرکت کننده در آن فرایند همواره ثابت است. بنابراین در فیزیک کلاسیک دو قانون، قانون بقای جرم و قانون بقای انرژی شناخته شده و مورد قبول بود
گرما
هر شئی نورانی خواه ستاره خواه شمع، ضمن انتشار نور مقداری گرما منتشر می کند. در مورد گرما نیز مانند نور دو نظریه وجود داشت. بر طبق یکی از آنها، گرما جسمی مادی بود که می توانست از یک جسم به جسم دیگر وارد شود. این جسم را کالوریک
Caloric
می نامیدند که مشتق از کلمه ی یونانی به معنی. بر طبق این عقیده، گرما است هنگامی که چوب می سوزد، کالوریک چوب به شعله و از طریق شعله به اجسام مجاور منتقل می شود. در اواخر قرن هیجدهم این نظریه مطرح شد که گرما به صورت ارتعاش است. در سال ۱۷۹۸ بنجامین تامسون که به سوراخ کردن توپ نظارت می کرد، متوجه شد که مقداری گرما تولید می شود. وی نظر داد که این گرما می بایستی به صورت ارتعاش باشد و بر اثر اصطکاک مکانیکی مته و توپ تولید می شود

ژول مدت سی و پنج از عمر خود را صرف تبدیل انواع کار به گرما کرد. وی مقدار گرمایی را که از یک جریان الکتریکی تولید می شود، اندازه گیری کرد. با چرخاندن چرخهای پره دار در داخل آب، با متراکم کردن گاز و کارهای دیگری از این نوع انجام داد تا سر انجام به این نتیجه رسید که مقدار معینی کار، به هر صورتی که باشد، همیشه مقدار معینی گرما ایجاد می کند که وی آن را معادل مکانیکی گرما نامید

Mechanical Equivalent of Heat
چون گرما می توانست به کار تبدیل شود، می بایستی صورتی از انرژی باشد
Energy
یک کلمه یونانی به معنی حامل کار است
در هر تبدیل یک نوع انرژی،به نوع دیگر، مثلاً تبدیل انرژی الکتریکی به انرژی مکانیکی، مقداری انرژِی به گرما تبدیل می شود. ظرفیت هر دستگاه برای انجام دادن کار، انرژی آزاد آن دستگاه نامیده می شود. بخشی از انرژی که از میان می رود و به صورت گرما ظاهر می شود، در اندازه گیری آنتروپی مجسم می شود. اصطلاح آنتروپی در سال ۱۸۵۰ توسط کلوزیوس به کار گرفته شد. کلوزیوس متوجه شد که در هر فرایندی که شامل جریانی از انرژی است، همیشه مقداری از انرژی از میان می رود و به گرما تبدیل می شود، به طوری که آنتروپی جهان پیوسته در حال افزایش است. افزایش پیوسته ی آنتروپی به قانون دوم ترمودینامیک موسوم است. این قانون را گاهی به کهولت یا مرگ تدریجی جهان تعبیر می کنند. طبق نظر کلوزیوس تغییرات آنتروپی یک سیستم برابر است با
dS=dQ/T

که در آن
dS , dQ , T
به ترتیب دمای مطلق، تغییرات گرما و تغییرات آنتروپی است. امروزه این رابطه به شکل زیر مورد استفاده قرار می گیرد
ds> or =dQ/T
با توجه به رابطه ی بالا بسادگی مشاهده می شود که آنتروپی یک سیستم که گاهی آنرا به نظمی نیز تعبیر می کنند، همواره بزرگتر یا مساوی صفر است و هیچگاه منفی نمی شود
۲-۸
ترمودینامیک
ترمودینامیک شاخه‌ای از فیزیک است که در آن ، برخی از خواص اجسام را که به علت تغییر دما ، تغییر می‌ کنند، مورد مطالعه قرار می‌گیرد

مراحل مطالعه ترمودینامیک
قسمتی از فضا یا شی و یا نمونه را که به اختیار در نظر گرفته و مطالعه روی آن متمرکز می‌شود، اصطلاحا سیستم می‌گویند. بقیه فضا یا شی نمونه را که در تماس با سیستم بوده و در تحولات سیستم دخالت دارد یا به بیان دیگر با سیستم اندرکنش می‌کند، محیط اطراف می‌گوییم
دیدگاه ماکروسکوپیک
Macroscopic

دیدگاه ماکروسکوپیک ، یک نگرش کلی است و مشخصات کلی ، یا خواص بزرگ ـ مقیاس سیستم ، مبنای توصیف ماکروسکوپی سیستم را تشکیل می‌دهند. بطور خلاصه ، توصیف ماکروسکوپیکی یک سیستم عبارت از مشخص کردن چند ویژگی اساسی و قابل اندازه‌ گیری آن سیستم است
دیدگاه میکروسکوپیک
Microscopic
از نظر آماری ، یک سیستم متشکل از تعداد بسیار زیادی ملکول
N
مولکول که هر کدام از این ملکول‌ها می‌تواند در مجموعه‌ای از حالتهایی که انرژی آنها مساوی
E1 و E2 ?
است، قرار ‌گیرد. این سیستم را می‌توان بصورت منزوی در نظر گرفت و یا در بعضی موارد می‌توان فرض کرد که مجموعه‌ای از سیستم‌های مشابه ، یا جمعی از سیستم‌ها ، آن را در بر گرفته‌اند
سیر تحولی و رشد
زمانی که برابری حرارت با انرژی مکانیکی ، بطور قاطع ثابت شد، موقع آن فرا رسید که کار ?سادی کارنو? درباره قوانین مربوط به تبدیل شکلی از انرژی به شکل دیگر ، تعمیم یابد. نخستین گامی که در این جهت برداشته شد، توسط فیزیکدان آلمانی ، رودلف کلاسیوس و لرد کلوین در نیمه دوم قرن نوزدهم صورت گرفت. این تلاشها به همین صورت ادامه یافت تا اینکه قوانین اساسی ترمودینامیک که بدنه اصلی و زیر بنای این علم را تشکیل می‌دهند، تدوین شد

قوانین اساسی ترمودینامیک
قانون صفرم ترمودینامیک
یک کمیت اسکالر به نام دما وجود دارد که خاصیتی است متعلق به تمام سیستمهای ترمودینامیکی (در حال تعادل)، به طوری که برابری آن شرط لازم و کافی برای تعادل گرمایی است

قانون اول ترمودینامیک
اگر سیستمی فقط به طریقه بی‌دررو از یک حالت اولیه به یک حالت نهایی برده شود، کار انجام شده برای تمام مسیرهای بی‌دررو که این دو حالت را به یکدیگر مربوط کنند، یکسان است
قانون دوم ترمودینامیک
هیچ فرایندی که تنها نتیجه آن جذب گرما از یک منبع و تبدیل آن گرما به کار باشد، امکان پذیر نیست. به بیان دیگر می‌توان گفت که امکان ندارد که تنها اثر یک ماشین چرخه ای آن باشد که بطور مداوم آزمایش‌های مربوط به گرما را از جسمی به جسم دیگر با دمای بالا منتقل کند
قانون سوم ترمودینامیک
این قانون بیان می‌کند که ممکن نیست از طریق یک سلسله فرایند متناهی به صفر مطلق دست یافت. به عبارتی رسیدن به صفر مطلق محال است. البته به نزدیکی‌های صفر مطلق می‌شود رسید، اما خود صفر مطلق قابل دسترس نمی‌باشد

ارتباط کمیات ماکروسکوپیک و میکروسکوپیک
کمیتهای ماکروسکوپیک و میکروسکوپیک هر سیستمی باید با هم ارتباط داشته باشند. زیرا آنها از دو راه مختلف، وضعیت یکسانی را توصیف می‌کنند. بویژه، باید بدانیم که کمیتهای ماکروسکوپیک را بر حسب کمیتهای میکروسکوپیک بیان کینم

بعنوان مثال فشار یک گاز ، عملا با استفاده از فشارسنج اندازه‌ گیری می‌شود، اما از دیدگاه میکروسکوپیک ، فشار مربوط است به آهنگ متوسط انتقال اندازه حرکت ملکولهای گاز که به واحد سطح فشارسنج برخورد می‌کنند. اگر بتوانیم کمیتهای ماکروسکوپیک را بر حسب کمیتهای میکروسکوپیک تعریف کنیم، قادر خواهیم بود قوانین ترمودینامیک را بطور کمی به زبان مکانیک آماری بیان کنیم
ارتباط ترمودینامیک با مکانیک آماری
توضیح علم ترمودینامیک به کمک علم انتزاعی‌تر مکانیک آماری ، یکی از بزرگترین دستاوردهای فیزیک است. علاوه بر این ، بنیادی‌تر بودن نکات مکانیک آماری، به ما امکان می‌دهد که اصول عادی ترمودینامیک را تا حد قابل توجهی تکمیل کنیم
چشم انداز ترمودینامیک

توصیف مشخصات کلی یک سیستم به کمک تعدادی از ویژگیهای قابل اندازه‌ گیری آن، که کم و بیش توسط حواس ما قابل درک هستند، یک توصیف ماکروسکوپیک است. این توصیفها نقطه شروع تمام بررسیها در تمام شاخه‌های فیزیک هستند. اما در ترمودینامیک توجه‌مان به داخل سیستم معطوف می‌شود، بنابراین دیدگاه ماکروسکوپی را اختیار می‌کنیم و بر آن دسته از کمیات ماکروسکوپی تاکید می‌کنیم که رابطه‌ای با حالت داخلی سیستم داشته باشند
تعیین کمیتهایی که برای توصیف این حالت داخلی لازم و کافی هستند، به عهده آزمایش است. آن کمیتهای ماکروسکوپیکی که به حالت داخلی سیستم مربوط هستند، مختصات ترمودینامیک خوانده می‌شوند. این مختصات، برای تعیین انرژی داخلی سیستمبه کار می‌آیند. هدف ترمودینامیک ، پیدا کردن روابط کلی این مختصات ترمودینامیکی است که با قوانین بنیادی ترمودینامیک سازگار باشند. سیستمی را که بتوان بر حسب مختصات ترمودینامیکی توصیف کرد، سیستم ترمودینامیکی می‌گویند

انرژی درونی
مجموع انرژیهای جنبشی و پتانسیل کلیه ذره‌های یک جسم را انرژی درونی آن جسم می‌نامند
دیدکلی
اگر دستهای خود را به هم بمالید، مشاهده می‌کنید که دستهای شما گرم تر شده است. در این حالت انرژی جنبشی دستها کجا رفته است؟ چون دستها گرم تر شده‌اند، می‌توان نتیجه گرفت که انرژی درونی آنها افزایش یافته است. در نتیجه می‌توان گفت که در اثر مالش انرژی جنبشی دستها به انرژی درونی آنها تبدیل شده است
ماهیت انرژی درونی

بنابر نظریه جنبشی مولکولی، هر ماده از ذرات ریزی تشکیل شده است که با سرعتها و در نتیجه انرژیهای متفاوت در حرکت و جنبش هستند. علاوه بر این مانند مدل ارتعاش یک جسم جامد، ذره‌های جسم دارای انرژی پتانسیل نیز هستند. این انرژی به فنری که در مدل ارتعاشی اتمها را به هم متصل می‌کرد، مربوط است
ارتباط انرژی درونی با دما
انرژی درونی چای یک فنجان که مدتی مانده و سرد شده است، کمتر از وقتی است که چای داغ بوده است. چای یخ کرده دمای پایین تری دارد و چای داغ دمایش بالاتر است. به این ترتیب هر چه دمای جسمی بالاتر باشد، انرژی درونی آن بیشتر است. یعنی ذره‌های آن دارای انرژی جنبشی و پتانسیل بیشتری هستند
ارتباط انرژی جنبشی با دما
اگر انرژی جنبشی ذرات یک جسم را بر تعداد ذرات تشکیل دهنده جسم تقسیم کنیم، انرژی جنبشی متوسط یک ذره بدست می‌آید. انرژی جنبشی متوسط ذرات چای داغ که دمای بالاتری دارد، بیشتر از انرژی جنبشی متوسط ذره‌های چای سرد شده است که دمای پایین تری دارد. لذا نتیجه می‌گیریم که دمای جسم با انرژی جنبشی متوسط ذره‌های تشکیل دهنده آن متناسب است
این امر در ابعاد اتمی یا ابعاد میکروسکوپی بسیار مهم و مورد توجه است. به عنوان مثال در مباحث ترمودینامیک و مکانیک آماری با استفاده از روابط خاصی این انرژی در موارد مختلف محاسبه شده و با توجه به به مقدار آن در مورد وضعیت سیستم بحث می گردد. بنابر این می‌توان گفت که هر چه دمای جسم بالاتر رود ، انرژی جنبشی متوسط ذره‌های آن نیز افزایش خواهد یافت
انرژی جنبشی متوسط ذره‌های دو جسم متفاوت که دمای یکسانی دارند، با هم برابر است. به عنوان یک مورد ملموس و قابل مشاهده می‌توان به این مورد اشاره کرد که انرژی جنبشی متوسط ذره‌های آبی که بوسیله یک لیوان از استخری برداشته شده است، با انرژی جنبشی متوسط ذره‌های آب استخر برابر است. ولی به دلیل تفاوت تعداد ذره‌های آب لیوان و آب استخر، انرژی جنبشی و در نتیجه انرژی درونی یکسانی ندارند. بلکه انرژی درونی آب لیوان به مراتب کمتر از انرژی درونی آب استخر است
مکانیک آماری
نگاه اجمالی

در مکانیک آماری با سیستم های بزرگ سر و کار داریم. یعنی سیستم هایی که در آنها تعداد ذرات زیاد است
(N≈۱۰۲۳)
. در چنین سیستم هایی به دنبال یافتن پاسخ صریح به سوالات زیر هستیم
سطوح انرژی قابل دسترس کدامند؟
• چگونه ذرات خود را در این سطوح توزیع می کنند؟
• اگر شرایط سیستم عوض شود (مثلا با تغییر دما) توزیع ذرات چگونه تغییر می کند؟
• با معلوم بودن تابع توزیع چگونه می توان کمیت های تعریف کننده خواص گرمایی سیستم (مانند ظرفیت گرمایی) را بدست آورد؟
گرچه سیستم های ماکروسکوپی (بزرگ) را مطالعه می کنیم ، اما رفتار ذرات را به طور جداگانه بررسی می کنیم. یعنی دیدگاه میکروسکوپی به کار می بریم. در چنین برخوردی می دانیم که تعیین دقیق تاریخچه ذرات کاملا مشخص نیست. از اطلاعات قبلی می توان گفت که یک ذره تحت تاثیر نیروی معینی قرار می گیرد
روش های مطالعه سیستم های چند ذره‌ای
در مورد دو ذره ، برهمکنش تعریف شده ای بین آنها برقرار است که می تواند هم به طور کلاسیک و هم به صورت کوانتومی مطالعه شود. برای یک سیستم سه ذره ای مطالعه دقیق ممکن نیست، زیرا تاثیر حضور ذره سوم در دو ذره دیگر به دقت قابل تعیین می باشد. با این صحبت به نظر می رسد که برای سیستم های ماکروسکوپی ، ما با یک مشکل اساسی روبرو هستیم. عمدتا در مطالعه سیستم های چند ذره‌ای دو روش مطرح می شود که عبارتند از
برهمکنش بین ذرات قابل اغماض است. مکانیک آماری
• مطالعه سیستم هایی که دارای برهمکنش می باشند. نظریه چند ذره‌ای

دیدگاه مکانیک آماری
دیدگاه مکانیک آماری میکروسکوپی است. بدین معنی که در این دیدگاه تا حد امکان جزئیات ساختاری سیستم ها منظور می شود. لذا به علت زیاد بودن تعداد ذرات صحبت به زبان احتمال خواهد بود. مثلا احتمال یافتن ذره در یک سطح انرژی یا تراز انرژی. به طور اصولی می توان ذرات را به طور جداگانه انتخاب نموده و صور مختلف آرایش های آنها را در نظر گرفت. اما چون احتمال مربوط به اشکال مختلف آرایش ها اختلاف چندانی ندارند، پس متوسط گیری در این مقوله زیاد بد نمی باشد
ارتباط مکانیک آماری با ترمودینامیک

ترمودینامیک یک تئوری کلاسیک و قدیمی است. علم حرکت و آزمایش‌های مربوط به گرما
Heat and motion
. در این علم که دارای دیدگاه ماکروسکوپی است ، کلیه سیستم ها بدون توجه به ساختار اتمی و با انتصاب کمیات قابل اندازه گیری مثل حجم ، فشار ، آنتالپی ، انرژی داخلی ، دما و آنتروپی مطالعه می شود. ترمودینامیک مبتنی بر سه قانون بسیار مهم و البته تجربی است که به قوانین ترمودینامیک معروف هستند و در ترمودینامیک مورد بحث قرار می گیرند.
این علم قادر است روابط بیشماری بین کمیات مختلف مثل حجم و تعداد ذرات سیستم
(V,N)
یا کمیات مکانیکی مانند فشار و انرژی داخلی
(U,P)
و یا کمیات گرمایی مانند آنتروپی و دما
(S,T)
برقرار کند. به علاوه این علم قادر است ارتباط بین خواص مشخصه سیستم ها ، مثل گرمای ویژه ، تراکم پذیری و تحرک الکترونها را ایجاد نماید. اما این درس نمی تواند مقادیر مطلق کمیات مذکور را تعیین کند و این وظیفه مکانیک آماری است که ، علاوه بر رفع این نقص و تایید مجدد قوانین ترمودینامیکی ، می تواند دما را به انرژی ذرات اتصال دهد تئوری جنبشی گازها
Kinetic Theory of Gasses

و آنتروپی را در یک طریق بخصوصی به بی نظمی اتصال دهد. (معادله معروف بولتزمن
چرا ترمودینامیک به مکانیک آماری منجر می شود؟
ترمودینامیک یک درس کلاسیک است و در موارد زیرین نقض می شود:
در دماهای پایین
در این حالت خواص کلاسیکی سیستم ها از بین رفته و پدیده های مشاهده شده، کوانتومی هستند.
• چگالیهای بالا
به عنوان مثال می توان به ستارگان نوترونی اشاره کرد. در ستارگانی که جرم آنها اندکی بیشتر از جرم خورشید می باشد ، ریزش ثقلی تولید جرمی با چگالی های باور نکردنی می نماید. در چنین چگالی هایی ، هسته ها نیز می شکنند و به صورت مایع نوترونی در می آیند.
توابع توزیع اساسی در مکانیک آماری
در مکانیک آماری سه نوع تابع توزیع بر اساس تقسیم بندی ذرات مختلف وجود دارد، که عبارتند از
توزیع کلاسیک
اگر سیستمی تحت شرایط کلاسیکی باشد ، در این صورت ذرات چنین سیستمی کلاسیک تلقی می شوند (ذرات کلاسیکی). این ذرات از تابع توزیع کلاسیک پیروی می کنند. اگر یک سیستم ماکروسکوپی با تعداد ذرات
N
و حجم
V
در نظر بگیریم ، به طوری که سیستم در تعادل گرمایی باشد، به عبارت دیگر ، فرض کنیم که بین ذرات برهمکنش ضعیفی وجود دارد که قابل صرفنظر کردن است. با این مفروضات تابع توزیع
f(E)
که بیانگر تعداد ذرات با انرژی معین
E
از بین
N
ذره می باشد ، به صورت زیر حاصل می گردد

(f(E)=e-[(e-μ)/KT
گونه توزیع ذرات به توزیع کلاسیکی یا توزیع ماکسول_بولتزمن معروف است. در عبارت فوق
E
بیانگر انرژی ذرات ،
T
دما ،
K
ثابت بولتزمن و
N
پتانسیل شیمیایی است که برابر با تعداد انرژی ذخیره شده در سیستم در اثر تغییر تعداد ذرات می باشد.
توزیع فرمی-دیراک
گروه دیگری از ذرات ، فرمیون ها هستند. از مشخصه های این ذرات می توان به داشتن عدد اسپینی نیم فرد (مضرب فرد ۲/۱) و تابع موج نامتقارن اشاره کرد. این ذرات از اصل پائولی پیروی می کنند. یعنی در هر حالت کوانتومی بیشتر از یک ذره نمی تواند وجود داشته باشد. به عنوان مثال الکترون در زمره ذرات فرمیونی قرار دارد. تابع توزیع حاکم بر این ذرات ، تابع توزیع فرمی-دیراک می باشد. به عبارت دیگر ، اگر سیستمی از این ذرات با بر همکنش ضعیف در نظر بگیریم، در این صورت تابع توزیعی که بر اساس آن می توان تعداد ذرات با انرژی معین
E
را در میان
N
ذره سیستم تعیین کرد، به صورت زیر ارائه می گردد
۱+(f(E)=e-[(e-μ)/KT
• توزیع بوز-انیشتن
گروه سوم و آخرین گروه از ذرات ، ذرات بوزونی هستند. این ذرات دارای عدد اسپنی صفر یا صحیح بوده و تابع موج متقارن دارند. ذرات بوزونی بر خلاف فرمیون ها از اصل پائولی پیروی نمی کنند. به عنوان مثال فوتون یک ذره بوزونی است. تابعی که توزیع ذرات بوزونی از آن تبعیت میکند ، تابع توزیع بوز-انیشتن می باشد. به بیان دیگر ، یک سیستم متشکل از ذرات بوزونی با بر همکنش ضعیف در نظر می گیریم. حال اگر بخواهیم تعداد ذراتی را که از بین N ذره بوزنی موجود در این سیستم دارای انرژی معین E هستند ، پیدا کنیم ، باید از رابطه زیر استفاده کنیم:

[۱-(f(E)=e-[(e-μ)/KT
سخن آخر
به طور خلاصه مطالعه یک سیستم بر اساس مکانیک آماری را می توان به این صورت بیان نمود که ابتدا کمیتی به نام چگالی حالت در مورد سیستم مورد نظر معرفی میگردد که بیانگر تعداد حالتهای کوانتایی در واحد حجم سیستم مورد نظر می باشد. سپس تابع توزیع مربوطه را با توجه به نوع ذرات سیستم محاسبه می کنند و با استفاده از این تابع وضعیت سیستم در حالت های مختلف

مورد بحث قرار می گیرد و مشخصات ذرات سیستم مانند ظرفیت گرمایی ذرات ، به صورت کمی و کیفی محاسبه می شود.
در مرحله آخر با معرفی توابع توزیع کانونیکی و با استفاده از روابط ریاضی مقادیر متوسط کمیتهای مختلف سیستم مانند انرژی ، پراکندگی ، فشار و… محاسبه می گردد. چون در ابتدای بحث اشاره کردیم که در مکانیک آماری سیستم ها به صورت آماری مورد بحث قرار می گیرند و لذا مقادیر متوسط کمیات فیزیکی بسیار مفید است.
نظریه جنبشی گازها

قوانین مکانیک را می‌توان بطور آماری در دو سطح مختلف به مجموعه‌ای از اتمها اعمال کرد در سطحی که نظریه جنبشی گازها نامیده می‌شود.
نگاه اجمالی
در ترمودینامیک فقط با متغیرهای ماکروسکوپیک ، مانند فشار و دما و حجم سر و کار داریم. قوانین اصلی ترمودینامیک‌ها بر حسب چنین کمیتهایی بیان می‌شوند. ابدا درباره این امر که ماده از اتمها ساخته شده است صحبتی نمی‌کنند. لیکن مکانیک آماری ، که با همان حیطه‌ای از علم سر و کار دارد که ترمودینامیک از آن بحث می‌کند و وجود اتمها را از پیش مفروض می‌داند.
محاسبه فشار بر پایه نظریه جنبشی

فشار یک گاز ایده‌آل را با استفاده از نظریه جنبشی محاسبه می‌کنند. برای ساده کردن مطلب ، گازی را در یک ظرف مکعب شکل با دیواره‌های کاملا کشسان در نظر می‌گیریم. فرض می‌کنیم طول هر ضلع مکعب
L
باشد. سطحهای عمود بر محور
X
را که مساحت هر کدام
e2
است.
A1 و A2
می‌نامیم. مولکولی را در نظر می‌گیریم که دارای سرعت
V
باشد. سرعت
V
را می‌توان در راستای یالهای مولفه‌های
Vx و Vy و Vz
تجزیه کرد. اگر این ذره با
A1
برخورد کند در بازگشت مولفه
X
سرعت آن معکوس می شود. این برخورد اثری رو ی مولفه
Vy
و یا
Vy
ندارد در نتیجه متغیر اندازه حرکت عبارت خواهد بود

m Vx – m Vx= 2 m Vx =
= اندازه حرکت اولیه ? اندازه حرکت نهایی

که بر
A1
عمود است. بنابراین اندازه حرکتی
e
به
A1
داده می‌شود برابر با
۲m Vx
خواهد بود زیرا اندازه حرکت کل پایسته است

زمان لازم برای طی کردن مکعب برابر خواهد بود با
Vx/L
. در
A2
دوباره مولفه
y
سرعت معکوس می‌شود و ذره به طرف
A1
باز می‌گردد. با این فرض که در این میان برخوردی صورت نمی‌گیرد مدت رفت و برگشت برابر با
۲e Vx
خواهد بود. به طوری که آهنگ انتقال اندازه حرکت از ذره به
A1
عبارت است
mVx2/e = Vx/2e . 2 mVx
، برای به دست آوردن نیروی کل وارد بر سطح
A1
، یعنی آهنگ انتقال اندازه حرکتی از طرف تمام مولکولهای گاز به
A1
داده می‌شود.

P = M/e(Vx12 + Vx22 + Vx32

P = 1/2eV2

تعبیر دما از دیدگاه نظریه جنبشی
با توجه به فرمول
RT2/3 = 1/2 MV2
یعنی انرژی کل انتقال هر مول از مولکولهای یک گاز ایده‌آل ، با دما متناسب است. می‌توان گفت که این نتیجه با توجه به معادله بالا برای جور در آمدن نظریه جنبشی با معادله حالت یک گاز ایده‌آل لازم است. و یا اینکه می‌توان معادله بالا را به عنوان تعریفی از دما بر پایه نظریه جنبشی یا بر مبنای میکروسکوبیک در نظر گرفت. هر دو مورد بینشی از مفهوم دمای گاز به ما می‌دهد. دمای یک گاز مربوط است به انرژی جنبشی انتقال کل نسبت به مرکز جرم گاز اندازه گیری می‌شود. انرژی جنبشی مربوط به حرکت مرکز جرم گاز ربطی به دمای گاز ندارد.

 

حرکت کاتوره‌ای را به عنوان بخشی از تعریف آماری یک گاز ایده‌آل در نظر گرفت.
V2
را بر این اساس می‌توان محاسبه کرد. در یک توزیع کاتوره‌ای سرعتهای مولکولی ، مرکز جرم در حال سکون خواهد بود. بنابراین ما باید چارچوب مرجعی را بکار ببریم که در آن مرکز جرم گاز در حال سکون باشد. در چارچوبهای دیگر ، سرعت هر یک از مولکولها به اندازه
U
سرعت مرکز جرم در آن چارچوب از سرعت آنها در چارچوب مرکز جرم بیشتر است. در اینصورت حرکتها دیگر کتره‌ای نخواهد بود و برای
V2
مقادیر متفاوتی بدست می‌آید. پس دمای گاز داخل یک ظرف در یک قطار متحرک افزایش می‌یابد. می‌دانیم که
M V2 1/2
میانگین انرژی جنبشی انتقالی هر مولکول است. این کمیت در یک دمای معین که در این مورد صفر درجه سلسیوس است، برای همه گازها مقدار تقریبا یکسانی دارد. پس نتیجه می‌گیریم که در دمای T ، نسبت جذر میانگین مربعی سرعتهای مولکولهای دو گاز مختلف مساوی است با ریشه دمای عکس نسبت به مربعهای آنها.

T=2/3k m1 V12/2= 2/3k m2 V22/2
مسافت آزاد میانگین
در فاصله برخوردهای پی‌درپی ، هر مولکول از گاز با سرعت ثابتی در طول یک خط راست حرکت می‌کند. فاصله متوسط بین این برخوردهای پی‌درپی را مسافت آزاد میانگین می‌نامند. اگر مولکولها به شکل نقطه بودند، اصلا با هم برخورد نمی‌کردند. و مسافت آزاد میانگین بینهایت می‌شد. اما مولکولها نقطه‌ای نیستند و بدین جهت برخوردهایی روی می‌دهد. اگر تعداد مولکولها آنقدر زیاد بود که می‌توانستند فضایی را که در اختیار دارند کاملا پر کنند و دیگر جایی برای حرکت انتقالی آنها

باقی نمی‌ماند. آن وقت مسافت آزاد میانگین صفر می‌شد. بنابراین مسافت آزاد میانگین بستگی دارد به اندازه مولکولها و تعداد واحد آنها در واحد حجم. و به قطر d و مولکولهای گاز به صورت کروی هستند در این صورت مقطع برای برخورد برابر با лd2 خواهد بود.

مولکولی با قطر