طيف سنج جرمي

اصول طیف سنجی جرمی ، جلوتر از هر یک از تکنیکهای دستگاهی دیگر ، بنا نهاده شده است. تاریخ پایه گذاری اصول اساسی آن به سال ۱۸۹۸ بر می‌گردد. در سال ۱۹۱۱ ، “تامسون” برای تشریح وجود نئون-۲۲ در نمونه‌ای از نئون-۲۰ از طیف جرمی استفاده نمود و ثابت کرد که عناصر می‌توانند ایزوتوپ داشته باشند.

تاريخچه
اصول طيف سنجي جرمي ، جلوتر از هر يك از تكنيكهاي دستگاهي ديگر ، بنا نهاده شده است. تاريخ پايه گذاري اصول اساسي آن به سال ۱۸۹۸ بر مي‌گردد. در سال ۱۹۱۱ ، “تامسون” براي تشريح وجود نئون-۲۲ در نمونه‌اي از نئون-۲۰ از طيف جرمي استفاده نمود و ثابت كرد كه عناصر مي‌توانند ايزوتوپ داشته باشند. تا جايي كه مي‌دانيم، قديميترين طيف سنج جرمي در سال ۱۹۱۸ ساخته شد.

اما روش طيف سنجي جرمي تا همين اواخر كه دستگاههاي دقيق ارزاني در دسترس قرار گرفتند، هنوز مورد استفاده چنداني نداشت. اين تكنيك با پيدايش دستگاههاي تجاري كه بسادگي تعمير و نگهداري مي‌شوند و با توجه به مناسب بودن قيمت آنها براي بيشتر آزمايشگاههاي صنعتي و آموزشي و نيز بالا بودن قدرت تجزيه و تفكيك ، در مطالعه تعيين ساختمان تركيبات از اهميت بسياري برخوردار گشته است.

اصول طيف سنجي جرمي
به بيان ساده ، طيف سنج جرمي سه عمل اساسي را انجام مي‌دهد:
مولكولها توسط جراياناتي از الكترونهاي پرانرژي بمباران شده و بعضي از مولكولها به يونهاي مربوطه تبديل مي‌گردند. سپس يونها در يك ميدان الكتريكي شتاب داده مي‌شوند.
يونهاي شتاب داده شده بسته به نسبت بار/جرم آنها در يك ميدان مغناطيسي يا الكتريكي جدا مي‌گردند.

يونهاي داراي نسبت بار/جرم مشخص و معين توسط بخشي از دستگاه كه در اثر برخورد يونها به آن ، قادر به شمارش آنها است، آشكار مي‌گردند. نتايج داده شده خروجي توسط آشكار كننده بزرگ شده و به ثبات داده مي‌شوند. علامت يا نقشي كه از ثبات حاصل مي‌گردد يك طيف جرمي است، نموداري از تعداد ذرات آشكار شده بر حسب تابعي از نسبت بار/جرم.
دستگاه طيف سنج جرمي
هنگامي كه هر يك از عمليات را بدقت مورد بررسي قرار دهيم، خواهيم ديد كه طيف سنج جرمي واقعا پيچيده‌تر از آن چيزي است كه در بالا شرح داده شد.
سيستم ورودي نمونه

قبل از تشكيل يونها بايد راهي پيدا كرد تا بتوان جرياني از مولكولها را به محفظه يونيزاسيون كه عمل يونيزه شدن در آن انجام مي‌گيرد، روانه ساخت. يك سيستم ورودي نمونه براي ايجاد چنين جرياني از مولكولها بكار برده مي‌شود. نمونه‌هايي كه با طيف سنجي جرمي مورد مطالعه قرار مي‌گيرند، مي‌توانند به حالت گاز ، مايع يا جامد باشند. در اين روش بايد از وسايلي استفاده كرد تا مقدار كافي از نمونه را به حالت بخار در آورده ، سپس جرياني از مولكولها روانه محفظه يونيزاسيون شوند.
در مورد گازها ، ماده ، خود به حالت بخار وجود دارد. پس ، از سيستم ورودي ساده‌اي مي‌توان استفاده كرد. اين سيستم تحت خلاء بوده، بطوري كه محفظه يونيزاسيون در فشاري پايينتر از سيستم ورودي نمونه قرار دارد.

روزنه مولكولي
نمونه به انبار بزرگتري رفته كه از آن ، مولكولهاي بخار به محفظه يونيزاسيون مي‌روند. براي اطمينان از اينكه جريان يكنواختي از مولكولها به محفظه يونيزاسيون وارد مي‌شود، قبل از ورود ، بخار از ميان سوراخ كوچكي كه “روزنه مولكولي” خوانده مي‌شود، عبور مي‌كند. همين سيستم براي مايعات و جامدات فرار نيز بكار برده مي‌شود. براي مواد با فراريت كم ، مي‌توان سيستم را به گونه‌اي طراحي كرد كه در يك اجاق يا تنور قرار گيرد تا در اثر گرم كردن نمونه ، فشار بخار بيشتري حاصل گردد. بايد مراقب بود كه حرارت زياد باعث تخريب ماده نگردد.

در مورد مواد جامد نسبتا غير فرار ، روش مستقيمي را مي‌توان بكار برد. نمونه در نوك ميله‌اي قرار داده مي‌شود و سپس از يك شير خلاء ، وارد محفظه يونيزاسيون مي‌گردد. نمونه در فاصله بسيار نزديكي از پرتو يونيزه كننده الكترونها قرار مي‌گيرد. سپس آن ميله ، گرم شده و توليد بخاري از نمونه را كرده تا در مجاورت پرتو الكترونها بيرون رانده شوند. چنين سيستمي را مي‌توان براي مطالعه نمونه‌اي از مولكولهايي كه فشار بخار آنها در درجه حرارت اتاق كمتر از ۹ – ۱۰ ميليمتر جيو

ه است، بكار برد.
محفظه يونيزاسيون
هنگامي كه جريان مولكولهاي نمونه وارد محفظه يونيزاسيون گشت ، توسط پرتوي از الكترونهاي پرانرژي بمباران مي‌شود. در اين فرآيند ، مولكولها به يونهاي مربوطه تبديل گشته و سپس در يك ميدان الكتريكي شتاب داده مي‌شوند. در محفظه يونيزاسيون پرتو الكترونهاي پرانرژي از يك “سيم باريك” گرم شده ساطع مي‌شوند. اين سيم باريك تا چند هزار درجه سلسيوس گرم مي‌شود. به هنگام كار در شرايطي معمولي ، الكترونها داراي انرژي معادل ۷۰ ميكرون – ولت هستند.

اين الكترونهاي پرانرژي با مولكولهايي كه از سيستم نمونه وارد شده‌اند، برخورد كرده و با برداشتن الكترون از آن مولكولها ، آنها را يونيزه كرده و به يونهاي مثبت تبديل مي‌كنند. يك “صفحه دافع” كه پتانسيل الكتريكي مثبتي دارد، يونهاي جديد را به طرف دسته‌اي از “صفحات شتاب دهنده” هدايت مي‌كند. اختلاف پتانسيل زيادي (حدود ۱ تا ۱۰ كيلو ولت) از اين صفحات شتاب دهنده عبور داده مي‌شود كه اين عمل ، پرتوي از يونهاي مثبت سريع را توليد مي‌كند. اين يونها توسط يك يا چند “شكاف متمركز كننده” به طرف يك پرتو يكنواخت هدايت مي‌شوند.
بسياري از مولكولهاي نمونه به هيچ وجه يونيزه نمي‌شوند. اين مولكولها بطور مداوم توسط مكنده‌ها يا پمپهاي خلا كه به محفظه يونيزاسيون متصل نيستند، خارج مي‌گردند. بعضي از اين مولكولها از طريق جذب الكترون به يونهاي منفي تبديل مي‌شوند. اين يونهاي منفي توسط صفحه دافع جذب مي‌گردند. ممكن است كه بخش كوچكي از يونهاي تشكيل شده بيش از يك بار داشته باشند، (از دست دادن بيش از يك الكترون) اينها مانند يونهاي مثبت تك ظرفيتي ، شتاب داده مي‌شوند.
پتانسيل يونيزاسيون
انرژي لازم براي برداشتن يك الكترون از يك اتم يا مولكول ، پتانسيل يونيزاسيون آن است. بسياري از تركيبات آلي داراي پتانسيل يونيزاسيوني بين ۸ تا ۱۵ الكترون ولت هستند. اما اگر پرتو الكترونهايي كه به مولكولها برخورد مي‌كند، پتانسيلي معادل ۵۰ تا ۷۰ الكترون ولت نداشته باشد، قادر به ايجاد يونهاي زيادي نخواهد بود. براي ايجاد يك طيف جرمي ، الكترونهايي با اين ميزان انرژي براي يونيزه كردن نمونه بكار برده مي‌شوند.
تجزيه گر جرمي
پس از گذر كردن از محفظه يونيزاسيون ، پرتو يونها از درون يك ناحيه كوتاه فاقد ميدان عبور مي‌كند. سپس آن پرتو ، وارد “تجزيه گر جرمي” شده كه در آنجا ، يونها بر حسب نسبت بار/جرم آنها جدا مي‌شوند. انرژي جنبشي يك يون شتاب داده شده برابر است با:
۱۲mv2=ev

كه m جرم يون ، v سرعت يون ، e بار يون و V اختلاف پتانسيل صفحات شتاب دهنده يون است.
در حضور يك ميدان مغناطيسي ، يك ذره باردار مسير منحني شكلي را خواهد داشت. معادله‌اي كه شعاع اين مسير منحني شكل را نشان مي‌دهد به صورت زير است:
(r =MV)/eH
كه r شعاع انحناي مسير و H قدرت ميدان مغناطيسي است.
اگر اين دو معادله را براي حذف عبارت سرعت تركيب كنيم، خواهيم داشت:

اين معادله مهمي است كه رفتار و عمل يك يون را در بخش تجزيه‌گر جرمي يك طيف سنج جرمي توجيه مي‌كند.

 

تجزيه گر جرمي و قدرت تفكيك
از معادله فوق چنين بر مي‌آيد كه هر قدر ، مقدار m/e بزرگتر باشد، شعاع انحناي مسير نيز بزرگتر خواهد بود. لوله تجزيه‌گر دستگاه طوري ساخته شده است كه داراي شعاع انحناي ثابتي است. ذره‌اي كه نسبت m/e صحيحي داشته باشد، قادر خواهد بود تا طول لوله تجزيه‌گر منحني شكل را طي كرده ، به آشكار كننده نمي‌رسند. مسلما اگر دستگاه ، يونهايي را كه جرم بخصوصي دارند، نشان دهد. اين روش چندان جالب نخواهد بود.
بنابراين بطور مداوم ، ولتاژ شتاب دهنده يا قدرت ميدان مغناطيسي تغيير يافته تا بتوان كليه يونهايي كه در محفظه يونيزاسيون توليد گشته‌اند را آشكار ساخت. اثري كه از آشكار كننده حاصل مي‌گردد، بصورت طرحي است كه تعداد يونها را بر حسب مقدار m/e آنها رسم مي‌كند. فاكتور مهمي كه بايد در يك طيف سنج جرمي در نظر گرفتن قدرت تفكيك آن است. قدرت تفكيك بر طبق رابطه زير تعريف مي‌شود:
(R=M)/M
كه R قدرت تفكيك ، M جرم ذره و M∆ اختلاف جرم بين يك ذره با جرم M و ذره بعدي با جرم بيشتر است كه مي‌تواند توسط دستگاه تفكيك گردد. دستگاههايي كه قدرت تفكيك ضعيفي دارند، مقدار R آنها حداكثر ۲۰۰۰ در بعضي مواقع قدرت تفكيكي به ميزان پنج تا ده برابر مقدار فوق مورد نياز است.
آشكار كننده
آشكار كننده بسياري از دستگاهها ، شامل يك شمارشگر است كه جريان توليدي آن متناسب با تعداد يونهايي است كه به آن برخورد مي‌كند. با استفاده از مدارهاي الكترون افزاينده مي‌توان آن قدر دقيق اين جريان را اندازه گرفت كه جريان حاصل از برخورد فقط يك يون به آشكار كننده اندازه ‌گيري شود.
ثبات آشكار كننده
سيگنال توليد شده از آشكار كننده به يك ثبات داده مي‌شود كه اين ثبات خود طيف جرمي را ايجاد مي‌نمايد. در دستگاههاي جديد ، خروجي آشكار كننده از طريق يك سطح مشترك به رايانه متصل است. رايانه قادر به ذخيره اطلاعات بوده و خروجي را به هر دو صورت جدولي و گرافيكي در مي‌آورد. دست آخر داده‌ها با طيفهاي استاندارد ذخيره شده موجود در رايانه مقايسه مي‌گردد.
در دستگاهها قديميتر ، جريان الكتروني حاصل از آشكار كننده به يك سري از پنج گالوانومتر با حساسيتهاي متفاوت داده مي‌شود. پرتو نوري كه به آينه‌هاي متصل به گالوانومترها برخورد مي‌ك

ند و به يك صفحه حساس به نور منعكس مي‌گردد. بدين طريق يك طيف جرمي با پنج نقش بطور همزمان ، هر يك با حساسيتي متفاوت ايجاد مي‌گردد. در حالي كه هنوز دستگاه قويترين قله‌ها را در صفحه طيف نگاه مي‌دارد، با استفاده از اين پنج نقش ثبت ضعيفترين قله‌ها نيز ممكن مي‌گردد.

آشنایی با طيف‌سنجي جرمي(MS)
طيف‌سنجي جرمي دستگاهي است كه مولكول‌هاي گازي باردار را بر اساس جرم آنها دسته‌بندي مي‌كند. دستگاه طيف‌سنج جرمي، مولكول‌ها و يون‌هاي گازي باردار را بر حسب جرم آنها در ميد

ان آهنربايي از يكديگر جدا و اندازه‌گيري مي‌كند.
طيف‌سنجي جرمي دستگاهي است که مولکول‌هاي گازي باردار را بر اساس جرم آنها دسته‌بندي مي‌کند. دستگاه طيف‌سنج جرمي، مولکول‌ها و يون‌هاي گازي باردار را بر حسب جرم آنها در ميدان آهنربايي از يکديگر جدا و اندازه‌گيري مي‌کند. طيف جرمي حاصل جهت تعيين وزن مولکولي دقيق،‌ شناسايي اجسام و تعيين درصد ايزوتوپ‌ها مورد استفاده قرار مي‌گيرد. مهمترين مزيت اين طيف سنجي نسبت به ساير روش‌ها از قبيل TEM، XRD، UV-Vis، IR، اسپکتروسکپي رامان و TGA اين است كه براي تعيين ترکيبات به طور مستقيم از روش‌هاي فوق نمي‌توان استفاده کرد. اما از روش MS مي‌توان استفاده نمود.
طيف‌سنجي جرمي دستگاهي است که مولکول‌هاي گازي باردار را بر اساس جرم آنها دسته‌بندي مي‌کند. اين روش ارتباط واقعي با طيف‌سنجي نوري ندارد ولي نام‌ طيف‌سنجي جرمي براي اين روش‌ها انتخاب شده است، زيرا دستگاه‌هاي اوليه توليد عکس مي‌کردند که شبيه به طيف خطي بود.
فرآيند دستگاه
در داخل دستگاه خلائي به ميزان mmHg 10-5- 10-6 برقرار است. مقدار کمي از نمونه (حدود ۱µ) توسط يک لوله از دريچة کوچکي وارد منبع يونش مي‌شود. نمونه در اثر گرما و خلاء موجود به صورت گاز درآمده و با جرياني از الکترون‌هاي پرانرژي (حدود ۷۰-ev50) به طرف آند مقابل شتاب گرفته و جذب آن مي‌شود. در نتيجه بمباران الکتروني، جزئي از مولکول‌هاي نمونه (حدود ۰/۱ درصد) يونيزه مي‌شود. در اولين مرحله مطابق واکنش زير يک الکترون از M خارج شده و يک کاتيون يک ظرفيتي مي‌دهد که وزن آن برابر وزن مولکول جسم است.

-e-→M++2e
در اثر افزايش انرژي الکترون‌هايي که به نمونه برخورد مي‌کنند، يون +M به کاتيون‌هاي يک ظرفيتي کوچک‌تري شکسته مي‌شود. يون‌هاي مثبت حاصل از طريق شتاب‌دهنده و نيروي دافعه قطب مثبت آن و همچنين به دليل تفاوت در فشار موجود بين محل ورود نمونه و فضاي سمت راست دستگاه به سمت روزنه کوچکي هدايت شده و پس از گذشتن از آن جريان يون‌ها از بين دو قطب يک آهنرباي قوي که جهت ميدان آن عمود بر مسير يون‌ها است عبور مي‌کند، کاتيون‌هاي موجود به نسبت جرم بر بار (m/e) منحرف شده و از يکديگر جدا مي‌شوند.
ذرات جدا شده پس از برخورد با يک صفحة عکاسي به صورت خطوطي ظاهر مي‌شوند. دستگاه طيف‌سنج جرمي، مولکول‌ها و يون‌هاي گازي باردار را بر حسب جرم آنها در ميدان آهنربايي از يکديگر جدا و اندازه‌گيري مي‌کند. طيف جرمي حاصل جهت تعيين وزن مولکولي دقيق،‌ شناسايي اجسام و تعيين درصد ايزوتوپ‌ها مورد استفاده قرار مي‌گيرد. شکل (۱) قسمت‌هايي از يک طيف‌سنج

جرمي را نشان مي‌دهد

روش GC- MS
روش ديگر براي وارد ساختن نمونه به دستگاه طيف‌سنج جرمي، استفاده از کروماتوگراف گازي است. کروماتوگراف گازي در بخش مربوطه توضیح داده شده است. در دستگاه GC-MS اجزاي يک مخلوط به ترتيب توسط يک ستون کروماتوگرافي از هم جدا مي‌شوند و پس از حذف گاز حاصل، وارد منبع يونش طيف سنج جرمي مي‌گردند.
کاربردها
اطلاعاتی که می توان از طیف سنج جرمی بدست آورد شامل موارد ذیل است:
شناسائی ترکیبات خالص آلی، تعیین وزن مولکولی و فرمول تجربی ترکیب، حضور یا عدم حضور گروههای عاملی در ترکیبات آلی، پایداری انواع مختلف یونها. برای مطالعه بیشتر می توان به مراجع [۲ و۳] مراجعه نمود.
همچنین براي آناليز ترکيب و پايداري در فاز محلول می توان از MS استفاده کرد. به عنوان مثال براي تعيين ساختار ترکيبات شاخه‌اي نانومقياس با ابعاد nm 1/5 مي‌توان از روش طيف‌سنج جرمي با تکنيک يونش الکترواسپري (ESI) استفاده کرد [۴].
همچنين از روش طیف سنجی به طور وسيعي در تجزيه ترکيبات آلي، بيولوژيک،‌ پليمري حاوی نانو ذرات طلا، فلورين‌ها و ترکيبات شاخه‌ائي مورد استفاده قرار مي‌گيرد و مي‌توان ساختار ترکيبات بيولوژيک در محلول را بررسي كرد [۹-۵] .
در مراجع [۱۶-۱۰]به بررسي ترکيب، ابعاد،‌ سطح و پايداري نانوذراتي که اغلب از ترکيبات آلي فلزي بدست مي‌آيد، پرداخته مي‌شود. همچنين برتري اين روش اسپکتروسکپي نسبت به ساير روش‌ها، سریع بودن پاسخ‌دهي مي‌باشد [۱۷].

مهمترين مزیت اين طیف سنجی بنسبت به ساير روش‌ها از قبيل TEM، XRD، UV-Vis، IR، اسپکتروسکپي رامان و TGA اين است كه براي تعيين ترکيبات به طور مستقيم از روش‌هاي فوق نمي‌توان استفاده کرد. اما از روش MS مي‌توان استفاده نمود [۱۸].

مراجع:
[۱]. D. A. Skoog, D. M. West Holt, “Principle of Instrumental Analysis”, Saunders College Publishing, Sixth edition, 1994.
[2].E. Stenhagen, S. Abrahamsson ,F. W. Mclafferty, “Registry of Mass Spectral Data”, Wiley New York, Vol. 4, 1974.
[3]. Aldermaston, Eight Peak Index of Mass Spectra, 2 ed, Mass Spectroscopy Data Center, Reading, United Kingdom, 1974.
[4]. J. J. Gaumet,† G. A. Khitrov, and G. F. Strouse, Mass Spectrometry Analysis of the 1.5 nm Sphalerite-CdS Core of [Cd2S14(SC6H5)36âDMF4], NANO LETTERS, 2, 375-379 , 2002
[5]. H. Inoue, H.; Ichiroku, N.; Torimoto, T.; Sakata, T.; Mori, H.; Yoneyama, H. Langmuir, 10, 4517, 1994
[6]. Gaumet, J. J.; Strouse, G. F. J. Am. Soc. Mass Spectrom. 2000, 11, 338
[7]. Trager, J. C. Int. J. Mass Spectrom., 200, 387, 2000
[8]. Plattner, D. A. Int. J. Mass Spectrom., 207, 125, 2001
[9]. Pryzybylski, M.; Glocker, M. O. Angew. Chem., Int. Ed. Engl., 35, 806, 1996
[10]. H. Inoue, N. Ichiroku, T. Torimoto, T. Sakata, H. Mori, H. Ž . Yoneyama, Langmuir, 10, 4517, 1994
[11]. M.A. Hines, P. Guyot-Sionnest, J. Phys. Chem. B, 102, 3655, 1998
[12]. J.R. Sachleben, V.L. Colvin, L. Emsley, E.W. Wooten, A.P. Ž . Alivisatos, J. Phys. Chem. B 10210117, 1998
[13]. M. Tomaselli, J.L. Yarger, M. Bruchez, R.H. Halvin, D. DeGraw, Ž . A. Pines, A.P. Alivisatos, J. Chem. Phys. 110 8861,1999
[14]. J.R. Sachleben, E.W. Wooten, L. Emsley, A. Pines,

V.L. Colvin, Ž . A.P. Alivisatos, Chem. Phys. Lett. 198 431,1992
[15]. X. Peng, J. Wickham, A.P. Alivisatos, J. Am. Chem. Soc. 120 5343, 1998
[16]. R.J. Arnold, J.P. Reilly, J. Am. Chem. Soc. 1201528, 1998
[17]. N. Herron, J.C. Calabrese, W.E. Farneth, Y. Wang, Science 259, 1426, 1993
[18]. Jean-Jacques Gaumet and Geoffrey F. Strouse , Electrospray Mass Spectrometry of Semiconductor Nanoclusters: Comparative Analysis of Positive and Negative Ion Mode, J Am Soc Mass Spectrom, 11, 338–۳۴۴, ۲۰۰۰

طیف سنج جرمی
تاریخچه
اصول طیف سنجی جرمی ، جلوتر از هر یک از تکنیکهای دستگاهی دیگر ، بنا نهاده شده است. تاریخ پایه گذاری اصول اساسی آن به سال ۱۸۹۸ بر می‌گردد. در سال ۱۹۱۱ ، “تامسون” برای تشریح وجود نئون-۲۲ در نمونه‌ای از نئون-۲۰ از طیف جرمی استفاده نمود و ثابت کرد که عناصر می‌توانند ایزوتوپ داشته باشند. تا جایی که می‌دانیم، قدیمیترین طیف سنج جرمی در سال ۱۹۱۸ ساخته شد.

اما روش طیف سنجی جرمی تا همین اواخر که دستگاههای دقیق ارزانی در دسترس قرار گرفتند، هنوز مورد استفاده چندانی نداشت. این تکنیک با پیدایش دستگاههای تجاری که بسادگی تعمیر و نگهداری می‌شوند و با توجه به مناسب بودن قیمت آنها برای بیشتر آزمایشگاههای صنعتی و آموزشی و نیز بالا بودن قدرت تجزیه و تفکیک ، در مطالعه تعیین ساختمان ترکیبات از اهمیت بسیاری برخوردار گشته است.

اصول طیف سنجی جرمی

اصول طیف سنجی جرمی
به بیان ساده ، طیف سنج جرمی سه عمل اساسی را انجام می‌دهد:

۱٫ مولکولها توسط جرایاناتی از الکترونهای پرانرژی بمباران شده و بعضی از مولکولها به یونهای مربوطه تبدیل می‌گردند. سپس یونها در یک میدان الکتریکی شتاب داده می‌شوند.
۲٫ یونهای شتاب داده شده بسته به نسبت بار/جرم آنها در یک میدان مغناطیسی یا الکتریکی جدا می‌گردند.
۳٫ یونهای دارای نسبت بار/جرم مشخص و معین توسط بخشی از دستگاه که در اثر برخورد یونها به آن ، قادر به شمارش آنها است، آشکار می‌گردند. نتایج داده شده خروجی توسط آشکار کننده بزرگ شده و به ثبات داده می‌شوند. علامت یا نقشی که از ثبات حاصل می‌گردد یک طیف جرمی است، نموداری از تعداد ذرات آشکار شده بر حسب تابعی از نسبت بار/جرم.
دستگاه طیف سنج جرمی
هنگامی که هر یک از عملیات را بدقت مورد بررسی قرار دهیم، خواهیم دید که طیف سنج جرمی واقعا پیچیده‌تر از آن چیزی است که در بالا شرح داده شد.

سیستم ورودی نمونه
قبل از تشکیل یونها باید راهی پیدا کرد تا بتوان جریانی از مولکولها را به محفظه یونیزاسیون که عمل یونیزه شدن در آن انجام می‌گیرد، روانه ساخت. یک سیستم ورودی نمونه برای ایجاد چنین جریانی از مولکولها بکار برده می‌شود. نمونه‌هایی که با طیف سنجی جرمی مورد مطالعه قرار می‌گیرند، می‌توانند به حالت گاز ، مایع یا جامد باشند. در این روش باید از وسایلی استفاده کرد تا مقدار کافی از نمونه را به حالت بخار در آورده ، سپس جریانی از مولکولها روانه محفظه یونیزاسیون شوند.

در مورد گازها ، ماده ، خود به حالت بخار وجود دارد. پس ، از سیستم ورودی ساده‌ای می‌توان استفاده کرد. این سیستم تحت خلاء ب

وده، بطوری که محفظه یونیزاسیون در فشاری پایینتر از سیستم ورودی نمونه قرار دارد.
روزنه مولکولی
نمونه به انبار بزرگتری رفته که از آن ، مولکولهای بخار به محفظه یونیزاسیون می‌روند. برای اطمینان از اینکه جریان یکنواختی از مولکولها به محفظه یونیزاسیون وارد می‌شود، قبل از ورود ، بخار از میان سوراخ کوچکی که “روزنه مولکولی” خوانده می‌شود، عبور می‌کند. همین سیستم برای مایعات و جامدات فرار نیز بکار برده می‌شود. برای مواد با فراریت کم ، می‌توان سیستم را به گونه‌ای طراحی کرد که در یک اجاق یا تنور قرار گیرد تا در اثر گرم کردن نمونه ، فشار بخار بیشتری حاصل گردد. باید مراقب بود که حرارت زیاد باعث تخریب ماده نگردد.
در مورد مواد جامد نسبتا غیر فرار ، روش مستقیمی را می‌توان بکار برد. نمونه در نوک میله‌ای قرار داده می‌شود و سپس از یک شیر خلاء ، وارد محفظه یونیزاسیون می‌گردد. نمونه در فاصله بسیار نزدیکی از پرتو یونیزه کننده الکترونها قرار می‌گیرد. سپس آن میله ، گرم شده و تولید بخاری از نمونه را کرده تا در مجاورت پرتو الکترونها بیرون رانده شوند. چنین سیستمی را می‌توان برای مطالعه نمونه‌ای از مولکولهایی که فشار بخار آنها در درجه حرارت اتاق کمتر از ۹ – ۱۰ میلیمتر جیوه است، بکار برد.

محفظه یونیزاسیون
هنگامی که جریان مولکولهای نمونه وارد محفظه یونیزاسیون گشت ، توسط پرتوی از الکترونهای پرانرژی بمباران می‌شود. در این فرآیند ، مولکولها به یونهای مربوطه تبدیل گشته و سپس در یک میدان الکتریکی شتاب داده می‌شوند. در محفظه یونیزاسیون پرتو الکترونهای پرانرژی از یک “سیم باریک” گرم شده ساطع می‌شوند. این سیم باریک تا چند هزار درجه سلسیوس گرم می‌شود. به هنگام کار در شرایطی معمولی ، الکترونها دارای انرژی معادل ۷۰ میکرون – ولت هستند.